Transcranial Electrical Stimulation to Sustain Aviator Performance: The Effects of Timing of Stimulation and Individual Differences

Jordayne Wilkins & Kathryn Feltman
Notice

Qualified Requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Fort Belvoir, Virginia 22060. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of Address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Human Subject Use

In the conduct of research involving human subjects, the investigator(s) adhered to the policies regarding the protection of human subjects as prescribed by Department of Defense Instruction 3216.02 (Protection of Human Subjects and Adherence to Ethical Standards in DoD-Supported Research) dated 8 November 2011.
1. REPORT DATE (DD-MM-YYYY)
08-03-2022

2. REPORT TYPE
Briefing Charts

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Transcranial Electrical Stimulation to Sustain Aviator Performance: The Effects of Timing of Stimulation and Individual Differences

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Wilkins, J.1,2, & Feltman, K.1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Aeromedical Research Laboratory
P.O. Box 620577
Fort Rucker, AL 36362

8. PERFORMING ORGANIZATION REPORT NUMBER
USAARL-CNPA-BC--2022-18

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Development Command
Military Operational Medicine Research Program
504 Scott Street
Fort Detrick, MD 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)
USAMRDC MOMRP

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The United States Army’s Future Vertical Lift (FVL) will likely include increased automation that will require for aviators to sustain attention to react to manual cues while performing long-duration flights and missions. Transcranial direct current stimulation (tDCS) has been shown to enhance attention and performance. The United States Army Aeromedical Research Laboratory (USAARL) conducted a study to test if tDCS can sustain aviators’ attention during high performance flights while delivering active and sham stimulations.

15. SUBJECT TERMS
transcranial direct current stimulation, tDCS, Future Vertical Lift, FVL

16. SECURITY CLASSIFICATION OF:
a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
1

19a. NAME OF RESPONSIBLE PERSON
Lorraine St. Onge, PhD

19b. TELEPHONE NUMBER (Include area code)
334-255-6906
13. Supplementary Notes (continued)

1U.S. Army Aeromedical Research Laboratory, 2Oak Ridge Institute for Science Education
The U.S. Army Future Vertical Lift (FVL) program will likely include increased automation longer duration missions where Aviators will likely be required to sustain attention to react to manual cues.

Transcranial Direct Current Stimulation (tDCS) can aid aviators’ attention by delivering a low intensity current (1 to 2 milliamps) to the brain through electrodes placed on the scalp (Brunoni et al., 2012; Dedoncker et al., 2016).

The main objective of this study was to test if tDCS can sustain aviators’ performance due to its effects on alertness and attention.

Methods

- Total of twenty-six male Aviators, max age was 40 years ($M = 36.69; SD = 2.75$).
- Aviators were required to have a minimum of 200 hours and had flown in the previous six months.
- Single-blinded, randomized, sham-controlled, mixed design to evaluate the main effects of stimulation and the time of delivery (prior to the flight and during the flight) on flight performance.
- Participants were randomly assigned groups, 10 members in "preflight stimulation group, 12 members in "during flight stimulation group and 4 members in the control group.
- 18 questionnaires and cognitive task were used to measure individual differences of performance outcomes and the duration of the stimulation effects.

Results

<table>
<thead>
<tr>
<th>Portion of Flight</th>
<th>Outcome</th>
<th>Sham Mean</th>
<th>Sham SD</th>
<th>Active Mean</th>
<th>Active SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Flight</td>
<td>RMSD Altitude</td>
<td>32.00</td>
<td>5.32</td>
<td>34.10</td>
<td>7.82</td>
</tr>
<tr>
<td></td>
<td>RMSD Airspeed</td>
<td>1.33</td>
<td>0.63</td>
<td>1.26</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>RMSD Heading</td>
<td>1.15</td>
<td>0.45</td>
<td>1.06</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Torque Split ID</td>
<td>215.00</td>
<td>63.00</td>
<td>207.00</td>
<td>105.00</td>
</tr>
<tr>
<td>Post-Flight</td>
<td>RMSD Altitude</td>
<td>42.30</td>
<td>13.60</td>
<td>37.70</td>
<td>8.94</td>
</tr>
<tr>
<td></td>
<td>RMSD Airspeed</td>
<td>1.50</td>
<td>0.94</td>
<td>1.42</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>RMSD Heading</td>
<td>1.57</td>
<td>1.22</td>
<td>1.73</td>
<td>1.49</td>
</tr>
<tr>
<td>Approach</td>
<td>Glideslope</td>
<td>0.17 (a)</td>
<td>0.15</td>
<td>0.05 (b)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Localizer</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07 (c)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

- There were no statistically significant differences within or between groups for either the pre-turn or post-turn metrics.
- Approach metrics: both glideslope and localizer values were statistically different between groups, \(t(9.33) = 2.49, p = 0.033, d = 1.62; t(15.46) = 2.92, p = 0.010, d = 1.50\), respectively.
- There was a statistically significant difference between the sham and active conditions within the during flight group for glideslope values, \(t(10) = -2.57, p = 0.028, d = 1.50\).

Discussion

- The findings suggest that tDCS improves aviators’ performance outcomes during attentional tasks when stimulation is applied during flight. This was important to determine whether tDCS can be used prescriptively during long duration flight missions that can tax attention in a high performance operation.
- Future research should further examine whether there are non-inflight applications for which tDCS can benefit the aviator.
All of USAARL’s science and technical information documents are available for download from the Defense Technical Information Center.

https://discover.dtic.mil/results/?q=USAARL