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Summary 

As military aeromedical environments integrate more complex technological systems, 

operators increasingly require more assistance in the form of automation. When used properly, 

automation has the potential to significantly enhance performance; however, proper use is 

predicated on the operator’s trust in the automation (TIA). TIA, like trust among people, is a 

complex construct that is influenced by biological, psychosocial, and behavioral aspects that 

affect (and are affected by) how a user feels about a system. While options for measuring TIA 

have rapidly expanded in the past decade, there has been little consideration for how well these 

measures can perform in operational environments. The purpose of this review was to explore 

the literature produced over the previous ten years to identify all means of measuring TIA, 

evaluating the quality of the studies that used each measure, and rating how well each measure 

would perform in an operational aeromedical environment (aeromedical appropriateness). A 

recommendation of 28 behavioral, physiological, and user-reported TIA measures is provided, as 

well as a list of 23 measures with a cautious recommendation (including caveats for use) and 6 

TIA measures that are not recommended. While these recommendations offer a starting point for 

testing TIA in aeromedical settings, further research is required to test how well these 

recommended measures actually perform in an operational aeromedical environment. 
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Introduction 

Complex technology advancements are rapidly increasing and being integrated into a 

wide variety of operational environments; this is especially true in military environments. As the 

complexity of these technologies increase and as their role becomes more centralized to critical 

tasks, humans who are interacting with advanced technology on a regular basis may find it more 

difficult to oversee successful operation without assistance. Automated systems have the 

potential to significantly improve the interactions between advanced technology and human 

operators, optimizing the strengths of both human and non-human components in order to 

maximize the frequency of successful outcomes. However, for an automation to be effective, it 

must be used appropriately by the human operator, and appropriate use is largely dictated by the 

human operator’s level of trust in the automation. For this reason, trust in automation (TIA) has 

emerged as one of the most significant considerations for engineering the next generation of 

complex technological innovations. 

Defining Trust in Automation 

Trust is generally defined as “the attitude that an agent will help achieve an individual’s 

goals in a situation characterized by uncertainty and vulnerability” (Lee & See, 2004, p. 51), and 

this definition has been found through decades of research to be suitable for describing TIA as 

well (Kohn et al., 2021). Trust is a critical component in ensuring proper human engagement and 

performance in any type of collaboration, and this is no different with collaborations with 

automation, which includes any technology that “actively selects data, transforms information, 

makes decisions, or controls processes” (Lee & See, 2004). Just like trust among humans, TIA is 

highly complex and is dynamically influenced by many intertwining factors that can have 

immediate and significant impacts on a user’s subsequent behavior during an automation-

enhanced task (Lee & See, 2004; Hoff & Bashir, 2015; Mayer et al., 1995). In general, these 

factors have been identified by researchers as human-based, automation-based, and environment-

based (Lee & See, 2004; Hoff & Bashir, 2015). Human-based trust factors are those that are 

related to the operator themselves, and include personality traits, pre-existing knowledge, 

ethnicity, age, and gender (Lu & Sarter, 2019). Automation-based trust factors are those that are 

inherent to the system being used, and include system reliability, ability, robustness, and 

predictability. Environment-based factors are perhaps the most complicated and difficult to 

measure element of trust in an interaction, and include things like prior experience, societal 

impact, culture, team collaboration, and task type. TIA is also a highly dynamic construct based 

upon one's experience across time, and experiences can influence trust-related beliefs and 

behaviors in both the short-term (e.g., during an automated task) and long-term (e.g., a long 

career with experiences across multiple types of automations).  

TIA is also complicated by its bi-directional nature, as optimal TIA lies in the middle of a 

spectrum between under-trusting and over-trusting a system. The overall level of TIA impacts 

the level of vigilance and sustainable attention an operator will give toward automation 

(Krausman et al., 2022). When operators place too much trust in a system (also called 

complacency), it can lead to an increased risk of mistakes, incidents, and accidents related to the 

user being “out of the loop” (Krausman et al., 2022; Lu & Sarter, 2019). Low levels of trust 

cause disuse of an automated system and can lead to unnecessarily high levels of user workload 

driven by the need to constantly (and unnecessarily) monitor automated systems to ensure safety 
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and accuracy (Lu & Sarter, 2019). Increased workload can significantly increase the risk of 

mistakes and oversights that would otherwise be identified and accounted for by the automation 

(Lee & See, 2004). Several researchers have hypothesized that calibrating appropriate levels of 

user trust through measurement and modification of human-based, automation-based, and 

environment-based TIA factors will result in ideal user reliance for optimal performance 

outcomes (Lee & See, 2004; Mayer et al., 1995; Sanders et al., 2021). 

Types of TIA Measures 

Trust is an emotional construct. As with any other emotional variable, it is perceptual, 

which means the experience of trust is context-dependent, based on a complex interaction of 

environmental and psychophysiological components, and entirely unique to the individual 

experiencing it (Barrett, 2017). All these considerations make valid and reliable measurement of 

trust particularly difficult. In the case of TIA, measures are often used to inform the automation 

itself, and therefore require data that are not only valid and reliable but are also continuously 

collected and able to be analyzed and modeled at an interval or ratio level of measurement (Wei 

et al., 2020). Researchers have attempted to overcome the inherent obstacles of properly 

measuring TIA by developing a wide array of instruments and metrics, ranging from simple 

single-item self-report measures to algorithmically constructed values representing the 

integration of several different elements related to trust. While most researchers advocate the use 

of a multi-modal approach to capturing TIA (a combination of different types of TIA metrics 

collected simultaneously and interpreted holistically), single-type TIA metrics generally fall into 

three broad categories: user-reported, physiological, and behavioral. 

 

User-reported measures. 

Recording an individual’s verbal or written rating of how they feel is the simplest and 

most common approach to measuring subjective variables, and TIA is no exception. User-

reported measures are the most frequently used TIA data collection method, although there is 

significant variation in content and complexity of these measures (Wei et al., 2020). While many 

scientists quantify trust by simply asking study participants to rate their level of trust along a 

Likert-type scale (i.e., rating one’s level of trust on a scale of 0 to 100), many more sophisticated 

TIA self-report measures have been developed to more precisely capture the different 

psychosocial aspects that have been highlighted by various models of interpersonal trust (e.g., 

Jian et al., 2000; Merritt et al., 2015). As with any standardized user-report measure, TIA 

questionnaires must demonstrate sound psychometric properties in order to be deemed a source 

of high-quality data. These properties include elements of validity (how well the instrument 

actually measures trust, and more specifically, how well it measures TIA) and reliability (how 

consistent its measurements are between subjects and over time). Availability of research on the 

psychometric properties of user-reported TIA measures is mixed, but common TIA instruments 

generally demonstrate high levels of internal consistency and acceptable correlation with other 

trust measures (Dolgov & Kaltenbach, 2017; Jessup et al., 2019). While some scientists have 

raised concerns that psychometric properties of self-report TIA measures have not been tested 

with enough scrutiny to rely upon them as valid sources of data (Madhavan, 2015), others have 

demonstrated that data from user-reported sources of TIA exhibit enough consistency and 

accuracy to be analyzed at an interval/ratio level of measurement (Wei et al., 2020). Practical 

criticisms of user-reported measures center on the fact that they require users to be consciously 
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aware of the construct being measured, and to also be forthcoming in their assessment. In the 

case of TIA, it is possible that users may not recognize subtle changes in their own levels of 

trust, may feel pressure to report a certain way, or may over- or under-report their levels of trust 

when compared to a more objective source of data (e.g., observing how reliant the user is on the 

automation’s assistance) (Drnec et al., 2016). Conscious awareness also requires a fair amount of 

attention, so repeated user-reported data capture can pose a burden on cognitive workload and/or 

can become disruptive to the completion of the study task (Lee et al., 2018). For this reason, a 

large number of user-reported TIA metrics are focused more on trait-based components that 

contribute to TIA levels during an automated task (e.g., propensity to trust, personal beliefs about 

the general trustworthiness of computerized assistance, etc.). 

Physiological measures. 

Physiological measures address several of the weaknesses associated with user-reported 

measures; namely, that they can capture changes in user state that are too subtle for conscious 

awareness and that they collect data passively as to not interrupt the user while they complete 

their task(s). The continuous feed of interval/ratio level data produced by physiological sensors 

are particularly valuable to TIA applications, since these data can be fed directly to a system 

running an automation in order to model and seamlessly respond to dynamic changes in a user’s 

state. For these reasons, physiological indicators are the preferred method of TIA measurement 

while an automated task is being completed. However, physiological measures are not without 

their own challenges and weaknesses when it comes to quantifying trust. A major practical 

consideration is that physiological sensors can introduce distracting equipment that is unfamiliar 

to users in their task environment, or the task environment may make reliable data capture 

impossible if sensors require a highly specific experimental setup (Balters & Steinert, 2017). A 

more fundamental challenge is that current physiological sensors are measures of autonomic 

arousal, and while they often demonstrate good sensitivity to changes in affective variables (like 

trust), they are by no means specific to them, which means that using physiological sensors to 

detect and quantify specific emotional states has not been well-supported in the literature 

(Balters & Steinert, 2017; Barrett, 2017). Physiological data do hold significant value as a 

measure of emotional intensity, and particularly as a measure of dynamic emotional intensity, 

which allows researchers to detect changes in affective states (Balters & Steinert, 2017). When 

correlated with more specific TIA measures, continuous detection of changes in affective 

intensity helps identify affective spikes and troughs related to TIA fluctuations that are likely to 

impact the user’s interactions with the system (Lee & See, 2004). Physiological shifts in intensity 

are also strong measures of attentional awareness, which has been identified as a strong correlate 

and possible predictor of TIA during a user’s engagement with an automated system. The unique 

inter-relationship between trust and attention makes physiological measures that are sensitive to 

attentional awareness particularly valuable for quantifying changes in TIA during an automated 

task (Parasuraman et al., 2008). 
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Behavioral measures. 

Behavioral measures (sometimes referred to as observational measures) offer insight into 

demonstrations of TIA, which are significantly less prone to bias than a user’s judgment and/or 

report of their own TIA level (Miller et al., 2016). Since the end goal of TIA research is not 

intended to be a comprehensive understanding of the “invisible” cognitive and affective 

elements of trust, per se, but is instead meant to use predictions of users’ TIA-influenced 

behavior to engineer better automated systems, behavioral data inform outcomes more directly 

aligned with the mission of TIA research (Ajzen & Fishbein, 1980; Hoff & Bashir, 2015). Like 

physiological measures, behavioral measures are best utilized while an automated task is being 

completed by the user. Behavioral measures often target a user’s explicit reliance on an 

automation (e.g., how frequently they adhere to an automated recommendation), and in order to 

be quantified, they rely on a standardized means of capturing each automated suggestion, the 

user’s response to that suggestion, and the reliability/accuracy of the automated suggestion. 

While this is a minor hurdle for laboratory-based tasks that have been specifically engineered for 

the purposes of measuring TIA, it can pose a practical challenge for measuring TIA during real-

world tasks and environments. As a result, the ongoing capture of behavioral measures is 

particularly critical when considering the design and engineering of automated systems, as the 

integration of these factors can provide continuous, unbiased TIA data that the system can 

respond to during an automated task in order to optimize TIA levels and subsequently optimize 

user performance 

(Parasuraman et al., 2008; Chancey et al., 2015). 

Constructing Scenarios for Testing TIA 

Since trust is dependent upon the presence of a “situation characterized by uncertainty 

and vulnerability” (Lee & See, 2004), the testing scenario used to elicit feelings of trust (or the 

lack thereof) is also a crucial element for ensuring the ecological validity of TIA measures. 

Automations are meant as a tool for reducing uncertainty in a complex situation; if a task does 

not initially present the operator with any sense of uncertainty or challenge as to the correct 

response, then trust is unable to form at all because the operator does not need automation to 

achieve their goal (Moorman et al., 1993). Vulnerability is dependent upon the level of risk 

inherent to the scenario (Mayer et al., 1995). If there is no perceived risk as a result of failing to 

achieve a goal, then trust cannot form because the operator does not need to achieve their goal at 

all (Johns, 1996). For obvious ethical reasons, the necessity of risk poses a challenge for 

developing testing scenarios that elicit vulnerability. Most research scenarios handle risks 

abstractly; the operator must determine automation trustworthiness while simply imagining 

possible risks, or researchers assume that failing to properly complete a task is risk enough on its 

own (Kohn et al., 2021). This calls into question whether the measures of TIA acquired during 

these scenarios are consistent with an operator’s actual interactions with an automation-assisted 

task in the real world. However, many researchers have found success in eliciting appropriate 

uncertainty and vulnerability by using scenarios from operational settings that have specific 

mission aims with clear ties to perceived risk in the event of failure (such as military operations 

or monitoring a self-driving car in high-traffic areas). For example, (Lyons & Stokes, 2012) 

successfully simulated uncertainty and vulnerability for a military context with a scenario of 

convoy route planning aids with the risk of a simulated attack. In these cases, scenarios are 

designed for specific operational tasks using cues and equipment that closely mirror real-life 

environments.  
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Purpose of This Review 

While TIA has emerged as a popular research topic across a wide variety of disciplines, 

most of the work that has been completed to-date is either theoretical or tailored to a controlled 

laboratory setting. Despite a global recognition that continuous measures and real-time responses 

to changes in user TIA are critical for monitoring its dynamic nature, many TIA instruments are 

static in nature and many experiments have not taken into consideration the logistical challenges 

of an operational setting. The purpose of this review is to create an index of user-reported, 

physiological, and behavioral TIA measures from the scientific literature published over the past 

ten years, and to identify which TIA instruments and testing scenarios may be feasible for use in 

an operational aeromedical environment. While several studies of TIA have been tailored to a 

military aviation application (for fixed- and rotary-wing aircraft), most studies are taken from 

laboratory settings or other operational settings (such as automation systems in self-driving cars). 

It is the intent of this report to capture TIA metrics and scenarios from a broad spectrum of use 

cases that may be valuable for innovating technology for aeromedical applications. 

Methods 

A review of the current literature was conducted to collect a wide range of TIA 

instruments and scenarios that have been used in research studies over the past decade. While 

healthcare and aviation domains were included as specific areas of interest, most articles came 

from a broad search of the TIA literature. This was done intentionally to gain a broad perspective 

of TIA measures that have been used across multiple fields in order to identify opportunities to 

apply techniques and scenarios that have been used in other operational settings that may also be 

valuable for an aeromedical environment. Searches were conducted in three databases: Google 

Scholar, EBSCO, and the Defense Technical Information Center’s (DTIC) collection of military 

technical reports. Each search included a Boolean list of terms that were designed to isolate 

articles referencing specific TIA measures and measurement techniques from articles discussing 

theoretical models of trust and TIA. A summary of the search terms is included in the table 

below. 

This space is intentionally blank. 
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Table 1. Summary of Search Terms 

Database Search terms 

Google Scholar “trust in automation” OR “trust measures” 

“trust in automation” OR “trust measures” AND “medical” 

“trust in automation” OR “trust measures” AND “aviation” 

“measure trust in automation” 

“measure trust in automation” AND “medical” 

“measure trust in automation” AND “aviation” 

EBSCO “measure trust in automation medical aviation” 

“trust in automation” OR “trust measures” 

“trust in automation” OR “trust measures” AND “medical” 

“trust in automation” OR “trust measures” AND “aviation” 

DTIC “measure trust in automation” 

“trust in automation” OR “trust measures” 

“trust in automation” OR “trust measures” AND “aviation” 

“trust in automation” OR “trust measures” AND “medical” 

Each search was filtered to restrict results to articles published within the past ten years 

(2013-2023), written in English, approved for public release, and peer-reviewed (except for 

technical reports pulled from DTIC, which were published after scientific review and routing 

procedures consistent with government regulations). Articles needed to include at least one 

measure of TIA, collected before, during, and/or after an individual’s interaction with an 

automated system. Review articles discussing various TIA measures and articles that analyzed 

the psychometric properties of instruments designed to measure TIA were also included. Initial 

searches were conducted in March 2023. Results from each of the initial searches were reviewed 

for inclusion and exclusion independently by two reviewers. In addition to the filters applied to 

the initial search, the following types of papers were excluded: articles that discussed a 

theoretical model of TIA with no specific measures or recommendations for quantifying it, 

articles limited to philosophical considerations of TIA and its importance to developing 

automated systems, dissertations or theses, and conference presentations. Specific measures and 

scenarios were manually extracted by the reviewers and categorized based on whether testing 

scenarios were laboratory-based or field-based and whether TIA measures included were user-

reported, physiological, or behavioral. 

Final articles included in the review were rated independently by two reviewers on the 

research team. Quality ratings consisted of Likert scale responses (1-5) for 13 research quality 

criteria from the standardized Justification, Operationalisation, Replicability, Interval validity, 

Presentation, Interpretation, External validity, and Final Judgement (JORIPIEF) critical research 

review checklist developed for psychological research articles (Barber, 2003). A copy of the 

quality review checklist used by the reviewers is included in Appendix A. Any article that was 

rated with an overall score of less than 1.5 was excluded from the review, as this suggested poor 

enough research quality as to call into question the validity of its results. Reviewers were deemed 

qualified to evaluate research quality given a minimum five years of aeromedical research 

experience and a minimum of 12 academic credit hours in research methodology from an 

accredited university. In instances where overall research quality rating differed by two or more, 
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the reviewers discussed their ratings and modified initial scores as needed to reach a consensus. 

In addition to quality ratings conducted by researchers for each study, each of the 159 

TIA measures was independently evaluated for aeromedical appropriateness by three members 

of the research team. Reviewers were deemed qualified to evaluate aeromedical appropriateness 

if they were a currently rated active-duty fixed-wing aviator and/or if they had five or more years 

of experience as an aeromedical researcher. Raters for this review included two active-duty 

fixed-wing aviators (one rated Black Hawk pilot and one rated Apache pilot) and a U.S. Army 

Aeromedical Research Laboratory research technician with five years of aeromedical study 

experience. Aeromedical appropriateness was defined as the extent to which a measure could be 

properly implemented according to its best practices within the physical and operational confines 

of an active aeromedical environment. Low aeromedical appropriateness might include measures 

that require large, specialized equipment that could not fit inside of an aircraft and/or 

measurement tasks that would significantly disrupt a typical flight task; conversely, high 

aeromedical appropriateness would suggest measures that require no specialized equipment 

beyond what is already available in an aircraft and/or collect information on TIA with no 

discernable disruption to flight tasks. Since there are no standardized methods for rating 

aeromedical appropriateness, ratings were determined based on criteria that were developed by 

the research team for the purposes of this review. Ratings were made on a scale of 1 through 5 

across six criteria, with 1 representing the lowest possible aeromedical appropriateness and 5 

representing the highest possible aeromedical appropriateness. A copy of the aeromedical 

appropriateness checklist used by the reviewers is included in Appendix A. Similar to the 

methodology for achieving inter-rater agreement for research quality ratings, in instances where 

overall aeromedical appropriateness rating differed by two or more, the reviewers discussed their 

ratings and modified initial scores as needed to reach a consensus. 

Results 

Initial searches were filtered in all three databases to return only English-language results 

that had been published in the past ten years. The Boolean search terms included in Table 1 

yielded a total of 3561 titles. Specific frequencies of each search are reported in Appendix B. 

Two researchers screened the list of titles and selected those which were relevant to the purpose 

of the review. Relevance at this stage of the review was determined based on whether the title 

alluded to operator TIA specifically, or if the study was exploring factors related to the proper 

use of an automation that could reasonably include TIA. Following the initial title review, both 

researchers conducted an independent review of abstracts to remove duplicate selections and 

further determine whether studies met criteria for inclusion; conceptual models of TIA with no 

specific measurement instruments were removed, as were conference presentations, dissertations, 

and theses. After these exclusions, a total of 159 abstracts were selected. Full-texts were acquired 

for all selected abstracts and were once again independently screened by the researchers to 

determine final inclusion based on whether the study included at least one specific measure of 

TIA and/or described a specific scenario used to elicit TIA. The research quality of each full-text 

article was also rated independently by the researchers on a scale of 1 (very poor) to 5 (very 

strong), based on the JORIPIEF checklist (Barber, 2003), which is a standardized checklist 

developed for the purposes of critically critiquing the overall quality of a research study in a 

consistent and replicable way (a copy of this checklist is included in Appendix A). While studies 

demonstrated a range of quality levels, no studies were deemed to be of poor enough quality to 
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merit exclusion from the review (i.e., scoring less than 1.5 on the JORIPIEF checklist). The 

mean overall quality rating was 𝑥 = 3.66, with a median of ƞ = 3.50. After all screening and 

exclusion efforts were completed, 31 articles remained and were included in the review. These 

articles included 6 detailed scenarios and 153 TIA measures: 94 were user-reported, 34 were 

physiological, and 25 were behavioral (see Figure 1).  

Figure 1. Search process and screening results. 
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Of the six scenarios that were described in the research, two were created specifically for 

the study at hand and not intended for generalized use, so they were not included in the analysis. 

The other four were standardized platforms created specifically to evaluate TIA and subsequent 

performance on the scenario task(s). All four of these standardized platforms were designed to 

emulate flight tasks and are suitable for testing automations that might be used in aerospace 

operations (if not an aeromedical environment, specifically). Two studies used the system 

monitoring task (SYSMON) from the Multi-Attribute Task Battery (MATB-II), which was 

developed by the U.S. Air Force to replicate common operational tasks that can be completed on 

a computer (National Aeronautics and Space Administration, 2016). One study used the Mixed 

Initiative Team Performance Assessment System (MITPAS), which is also a military-based 

performance scenario that was designed to evaluate performance of combined teams of humans 

and unmanned systems (Freedy et al., 2007). Another study used the Research Environment for 

Supervisory Control of Heterogenous Unmanned Vehicles (RESCHU-V), which was developed 

to test TIA and performance in the context of unmanned aerial vehicle (UAV) missions (Nehme, 

2009). Evaluations of the studies that included these scenarios determined them to be of equal 

research quality (3.50/5.00). A summary of quality ratings for the four standardized platforms is 

provided in Table 2. 

Table 2. Summary of Research Quality Ratings for TIA Testing Scenarios 

Scenario name n 

Mean research 

quality rating (range) 

Multi-Attribute Task Battery (MATB-II) SYSMON Task 2 3.50 (3,4) 

Mixed Initiative Team Performance Assessment System 

(MITPAS) 
1 3.50 (3,4) 

Research Environment for Supervisory Control of 

Heterogenous Unmanned Vehicles (RESCHU-V) 
1 3.50 (3,4) 

All standardized scenario platforms 4 3.50 

Behavioral measures included 18 measures of observed behaviors (a total of 10 unique 

types of behaviors were used overall) and seven measures of distinct communication patterns. A 

full list of these behavioral measures is included in Appendix C. Physiological measures 

included ten distinct methods of collection, and the most frequently used was eye tracking         

(n = 15). A full list of physiological measures is included in Table 3. Seventy-one of the 94 user-

reported measures were collected using validated instruments (a total of 29 unique instruments 

were used overall). Seventeen studies collected TIA using a Likert scale (where operators were 

simply asked to rate their current levels of trust on an ordinal numerical scale), and six non-

validated instruments were created specifically for use in a particular study. Since they were not 

intended to be scaled for broad research use, the six non-validated instruments were not included 

in our final analysis. A full list of the validated instruments (and the frequency that they were 

used among the studies in this review) is reported in Appendix C.  
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Table 3. Summary of Research Quality and Aeromedical Appropriateness Ratings for All TIA 

Measure Types 

TIA measure type n 

Mean research 

quality rating 

(SD) 

Mean aeromedical 

appropriateness rating 

(SD) 

Behavioral Observed behavior 

Communication pattern 

Overall behavioral 

18 

7 

25 

3.61 (0.53) 

5.00 (0.00) 

4.00 (0.78) 

4.11 (1.00) 

4.14 (0.50) 

4.12 (0.88) 

Physiological Eye tracking 

Skin conductance 

Electroencephalogram 

(EEG) 

Electrocardiogram 

(ECG) 

Heart rate/HRV 

Functional magnetic 

resonance imaging 

(fMRI) 

Facial expression 

Blood volume pulse 

Functional fear-infrared 

spectroscopy (fNIRS) 

Physiological synchrony 

Overall physiological 

15 

5 

3 

2 

2 

2 

2 

1 

1 

1 

34 

3.57 (0.73) 

3.10 (0.55) 

3.17 (0.58) 

3.50 (0.50) 

3.50 (0.50) 

3.00 (0.71) 

3.75 (1.77) 

5.00 (0.00) 

3.50 (0.50) 

5.00 (0.00) 

3.51 (0.76) 

3.82 (0.35) 

2.60 (1.03) 

2.61 (0.76) 

2.83 (0.24) 

3.00 (0.00) 

1.00 (0.00) 

4.33 (0.47) 

4.67 (0.47) 

3.67 (0.47) 

4.50 (0.50) 

3.35 (0.96) 

User-reported Validated instrument 

Likert scale 

Overall user-reported 

71 

17 

88 

3.66 (0.66) 

3.44 (0.35) 

3.62 (0.62) 

3.29 (0.75) 

3.85 (0.32) 

3.40 (0.71) 

All included measures 147 3.66 (0.70) 3.51 (0.83) 

All measures median scores 147 3.50 3.67 

The overall mean aeromedical appropriateness rating for all measures remaining in the 

analysis (n = 147) was 𝑥 = 3.51, with a median of ƞ = 3.67. A summary of all research quality 

and aeromedical appropriateness ratings for the TIA measures is provided in Table 3. Each 

measure’s individual quality and aeromedical appropriateness rating was compared against the 

median; scores below the median were considered “low” while scores above the median were 

considered “high.” These comparisons were used to categorize each measure based on strength 

of recommendation for using it in an operational aeromedical environment. Measures in the 

Strong category demonstrated high research quality and aeromedical appropriateness ratings. 

Measures in the Cautious category demonstrated a high rating in one area (research quality or 

aeromedical appropriateness) and low rating in the other. Measures in the Not Recommended 

category demonstrated low ratings of research quality and aeromedical appropriateness. Overall, 

there were 29 TIA measures in the High Recommendation category and 22 TIA measures in the 

Cautious Recommendation category. Six TIA measures were Not Recommended for use in an 

aeromedical research environment. A complete list of each recommendation category is included 

in Figure 2.  
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Figure 2. Measures listed by recommendation category. 
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Discussion 

High-level categorizations of TIA measurements based on ratings of research quality and 

aeromedical appropriateness resulted in a list of 29 measures that have a High Recommendation 

for use in an operational aeromedical research environment. This list includes instruments and 

techniques from all three types of TIA measurement. In addition, a list of 22 measures has been 

categorized as having a Cautious Recommendation, which means that a measure may pose some 

practical limitations in an aeromedical environment or is supported by research of less robust 

quality; caveats for measures with Cautious Recommendations (with additional support from the 

literature) are provided in the following discussion. Six TIA measurements are Not 

Recommended for use, and justification for this determination is included in this section. 

TIA Measures with Strong Recommendation 

Behavioral measures. 

Of all the measures identified by this review, behavioral TIA measures were the highest 

rated for both the quality of research in which they were used as well as their appropriateness for 

an aeromedical environment. Behavioral measures included both observed behaviors (things that 

the operators did that could be collected passively by the automation software or easily observed 

by an investigator) and communication patterns (how the operators communicate with other team 

members and the automation during a mission). Most observed behavior measures (70 percent) 

and all communication measures identified in the literature were categorized in the High 

Recommendation group.  

Seven distinct observable behavior measures were revealed in the analysis to be 

appropriate for the High Recommendation group. These measures included behavioral 

synchrony and entrainment, combined team performance, compliance with automation 

recommendations, intervention, reliance, delegation, and response time. These measures are 

uniquely advantageous, as they can generally be applied without disrupting cockpit operations. 

Behavioral synchrony and entrainment were originally developed as a measure of interpersonal 

trust among human teams but were modified to serve as a measure of TIA as well. In the context 

of TIA, behavioral synchrony and entrainment both refer to the adjustment of an operator’s 

behavior to more closely align with or complement the recommendations and behaviors of the 

automation (Krausman et al., 2022). For example, an operator may adjust their technique for a 

repeated action to more closely mirror the technique modeled by the automation. Compliance is 

observed when the pilot’s actions are in accordance with the system’s signals, requests, or 

demands (Krausman et al., 2022). Generally, compliance can be operationally defined as a 

situation when the operator chooses to comply with an automated task or recommendation that is 

“correct” or enhances performance. Conversely, intervention represents the frequency of 

incidents when the operator overrides an automation to take manual control, even in situations 

where the automation makes accurate decisions (Kohn et al., 2021). The frequency of 

intervention incidents and the time elapsed before intervention occurs can both be used to 

quantify the magnitude of TIA (or perhaps more precisely, the level of distrust) demonstrated by 

the operator (Kohn et al., 2021). Reliance is the opposite of intervention, defined as a situation 

when the operator chooses not to intercede when the automation makes a decision (Kohn et al., 

2021). Unlike intervention and compliance, which are active measures (i.e., the operator takes an 
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action based on the performance of the automation), reliance is a passive measure (the operator 

does not act to correct or takeover an automation). Unlike compliance, reliance can be 

operationally defined as the operator choosing to comply with an automated task or 

recommendation that is “incorrect” or degrades performance. Reliance occurs when an 

operators’ level of TIA exceeds their level of self-confidence in performing the task themselves 

(Kohn et al., 2021). Compliance, intervention, and reliance can be easily measured in simulated 

environments where accuracy of the automation can be manipulated by investigators; however, it 

can also be calculated in standard flight missions if a record of automation recommendations, 

automation accuracy, and operator response is captured in the system. Delegation refers to an 

operator ceding control to automation, and signals high levels of TIA (Kohn et al., 2021; Xie et 

al., 2019). Unlike reliance or compliance, which also refer to an operator’s tendency to accept an 

automated recommendation, delegation is a pre-emptive action taken by the operator to rely upon 

automation over the course of multiple actions/interactions. For this reason, delegation can only 

be measured if operators have the option within a system to give up control to the automation for 

a period of time (Xie et al., 2019). Lastly, response time refers to the time it takes for the 

operator to act following a prompt from the automation. High response times generally indicate 

lower TIA overall, but shorter response times only correlate with higher TIA if the operator 

ultimately complies with the automation (Kohn et al., 2021; Krausman, et al., 2022). Just as trust 

in a human co-pilot develops over time, operators’ level of TIA will likewise change over time 

as pilots become more familiar with the technology. Each of these observable behavior TIA 

measures can be collected repeatedly over the course of a mission (or multiple missions) to 

capture patterns of growing or waning levels of TIA as operators interact with the system over 

time. 

Communication patterns are another type of behavioral TIA measure that allows for 

passive data capture that does not interfere with operators’ natural interactions with the 

automated system. While communication measures often reflect human-human interpersonal 

trust, aspects such as communication rates, flows, and content can be used in human-automation 

interactions to quantify TIA during a mission, particularly in situations where a team of multiple 

human operators is working together with an automated system (Krausman et al., 2022). Unlike 

observable behaviors, which can frequently be used in any automation-enhanced system with 

little or no special modification, communication measures generally require more sophisticated 

data capture and analysis to offer TIA insights; as a result, a number of special tools have been 

developed to facilitate the use of communication patterns as a continuous measure of TIA. Three 

such tools that are strongly recommended for inclusion in operational aeromedical environments 

are the Bag of Words tool; Real-time Event, Flow, and Coordination Tool (REFLECT); and 

Network Analysis Tool developed by the Army Research Laboratory as part of their Human-

Autonomy Teaming Trust Toolkit (HAT3; Neubauer et al., 2022). These specialized tools 

provide a streamlined method of measurement for all other communication-based TIA measures 

with a strong recommendation based on this review: top-down and bottom-up content analysis, 

flow, and rate. The Bag of Words tool is a means of capturing and analyzing all communication 

content from a mission to assist with post-hoc top-down and bottom-up thematic analysis based 

on content categories that can be created and modified by the research team. REFLECT provides 

an organized visualization of communication flow among human operators and automated 

systems over the course of a mission (a standardized means of collecting and analyzing flow and 

rate) (Neubauer et al., 2022). The Network Analysis Tool is specifically intended to derive 

insights about TIA using communication data. While similar to REFLECT, Network Analysis 
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goes beyond a clear presentation of critical communication and includes robust statistical 

analyses that help researchers define TIA based on complex communication networks that form 

among human operators and automations during a team-based mission (Neubauer et al., 2022).  

Physiological measures. 

Four physiological TIA measures identified in the review were included in the High 

Recommendation group; this included eye tracking, facial expression, blood volume pulse 

(BVP), and physiological synchrony. Physiological synchrony described a data analysis 

technique used for capturing an array of physiological measures between different subjects as a 

means of determining similar levels of TIA across multiple operators (while baseline 

physiological data varies significantly between subjects, similarities in changes and patterns in 

physiological data have been correlated with similar patterns of TIA) (Krausman et al., 2022). 

Eye tracking was the most frequently used physiological measure of TIA across the literature    

(n = 15) and refers specifically to tracking operators’ gaze on a screen to determine where they 

were directing their attention (as opposed to ocular measures of physiological arousal, such as 

pupillometry). Using externally-mounted camera systems for collecting eye tracking data 

significantly improves the aeromedical appropriateness of this measure, as head-mounted 

tracking hardware (e.g., goggles or glasses) presents limitations when used alongside required 

operational gear for aeromedical crew members. Similarly, the recommendation for BVP was 

based upon standards in the literature that used a small wrist-worn photoplethysmography (PPG) 

sensor to derive data (as opposed to the finger clip sensor frequently used in clinical settings) 

(Krausman et al., 2022). 

While the facial expression studies included in this review were both well-designed and 

deemed to be of sufficient quality for the purposes of this review, it should be noted that outside 

of the TIA literature, facial expression has often had mixed performance in attempts to use it as a 

measure of emotional states. While facial expressions are undoubtedly an important tool for non-

verbally evaluating other people’s emotional states, their complexity and reliance on a vast array 

of contextual elements often complicate computerized efforts to use expressions to predict 

emotional state accurately (Gendron et al., 2018). Since they are often quite nuanced, issues such 

as lighting and head position can easily create problems in correctly interpreting facial 

expressions (Tarnowski et al., 2017). These issues are further complicated by the fact that many 

efforts to use computerized recognition and classification of facial expressions are trained on an 

outdated theory of emotion that suggests humans only experience six “basic” emotional states: 

joy, sadness, disgust, anger, fear, and surprise (Ekman, 1999; Li & Deng, 2022). More recent 

neuroscience has discounted the concept of basic emotions in favor of a dynamic model of 

emotions that follow much less predictable patterns of expression (Barrett, 2017). While research 

within the field of TIA has demonstrated some strong support for the use of facial expressions as 

a physiological measure, it is possible that the actual strength of this measure may vary based on 

the underlying theoretical shortcomings of using computerized facial expression as a means of 

“basic emotion” detection. One well-established solution to this issue in the literature has been 

combining facial recognition with other measures in order to develop a deep neural network 

approach that better accounts for the complexity of emotional expression (Li & Deng, 2022). 

Although facial expression has a High Recommendation (rather than a Cautious 

Recommendation), given its history of mixed performance, it is recommended that studies that 

incorporate facial expression as a physiological measure of TIA with the caveat of including it as 
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part of an array of measures (as was the case in both facial expression studies included in this 

review). 

User-reported measures. 

The high frequency of user-reported TIA measures in studies is unsurprising given the 

ease and convenience of these instruments. This same ease and convenience also makes many 

user-reported measures well-suited to administration in an operational environment, granted that 

they can be administered before and/or after a mission in order to avoid distracting operators 

from their aeromedical tasks. Just over one-third (36.7 percent) of all the user-reported TIA 

measures identified in this review received a High Recommendation for use in operational 

aeromedical environments. For a complete list, see Figure 2. These instruments are strongly 

recommended based on a combination of the strength of research quality for the studies that 

included them, as well as brevity of the instruments and the ability to administer according to 

their recommended best practices prior to and/or after an automation-assisted aeromedical 

mission (rather than having to interrupt operators immediately after aeromedical tasks to 

administer the instruments during the mission). 

TIA Measures with a Cautious Recommendation 

Behavioral measures. 

While observable behavior can be a great tool for gauging trust between teammates 

(whether human or automated systems), in the confines of a helicopter cockpit, not only are the 

behavioral indicators skewed by the limited available actions a pilot can take, but the means to 

record those behavioral indicators are hindered by the limited available options for camera 

placement. For this reason, behavioral TIA measures that require visual confirmation, namely 

manual verifications (when the operator checks an automated recommendation manually prior to 

accepting it) and proximity (how physically close to a system the operator tends to be), would 

not be as effective when pilots cannot move freely within the cockpit. Despite high quality 

ratings of research studies that included these measures, the limited physical movements 

afforded by an aircraft may hinder the quality of manual verifications and proximity data 

captured during an aeromedical mission. Manual verifications and proximity are recommended 

for inclusion only in the study of aeromedical tasks that are not completed within a physically 

confined operational space. The Economic Trust Game (sometimes called “the investment 

game”) is a well-established method for measuring trust in a partner (or automation) in an 

economic context (Berg et al., 1995). In the game, two partners (or an operator and an automated 

system) are paired together. The first partner (i.e., the operator) is given a certain amount of 

money; they are asked to invest or gift any amount of that money (even if it is zero) to their 

partner (i.e., the automation) and told that the researcher will triple the amount they decide to 

give. The second partner (automation) is then asked to give some amount of their tripled earnings 

back to the first partner (the operator). Trust is quantified by the amount of money the first 

partner chooses to give. While the Economic Trust Game may be a valid form of measuring 

interpersonal trust, it has limited use in studying TIA (Kohn et al., 2021) and it is not easily 

replicated in an operational environment. The specific economic context is not well-aligned with 

aeromedical operations, so attempting to initiate an Economic Trust Game within an aeromedical 

environment is likely to be highly distracting to the operator. Other behavioral measures are 
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context independent, and therefore much more suitable for a variety of operational environments. 

Physiological measures. 

Three physiological TIA measures were included with a Cautious Recommendation; not 

for any concerns related to quality of studies, but because of equipment and signal issues that 

impact the ability to collect the measures in an operational aeromedical environment. While 

simple heart rate can be captured accurately with a variety of sensors (many that pose very little 

interference to operators during aeromedical tasks), heart rate variability is best derived from a 

full ECG signal, which can pose issues related to wearing electrodes on the chest underneath the 

operator’s uniform. ECG signals captured from sensors that do not require chest-worn electrodes 

often demonstrate lower levels of signal strength and reliability, which can affect the validity of 

the measure (Lin et al., 2014). fNIRS uses a head-worn set of sensors similar to an electrode 

array used in an EEG. However, unlike EEG electrodes, fNIRS sensors do not require 

conductive gel and have been designed with ultra-portability in mind to accommodate use in 

ergonomic and operational environments (Cay, 2017; Ayaz et al., 2019). Despite an attempt to 

make fNIRS sensors portable, most systems still require a heard-worn sensor array that interferes 

with operators’ helmets in an aeromedical setting. 

User-reported measures. 

Likert scale measures of TIA were included with a Cautious Recommendation based on 

research quality ratings that were lower than the overall median. In fact, it is possible that the use 

of Likert scales had an influence on research quality ratings due to the high variability in the 

specific implementation of this measure and the fact that Likert scales are not often validated for 

their target construct, making them a less reliable subjective measure than validated instruments 

(Michalopoulou, 2017). Despite their high frequency of use across the studies included in this 

review (n = 17), the specific details of each Likert scale tended to vary significantly from study 

to study, with scales that offered anywhere from four to 100 options for operators to choose 

from. Some studies indicated that larger scales were used to improve precision (and subsequent 

quality) of ratings, but this assumption is not supported by several decades of research that have 

concluded that humans are unable to discern precision on a scale beyond seven options (a finding 

that has been frequently applied to other aspects of cognitive science as the “seven plus-or-

minus-two” rule) (Miller, 1956). While several applications of the “seven plus-or-minus two” 

rule have been criticised in light of new evidence (Cowan, 2015), Monte Carlo computer 

simulations have repeatedly confirmed no significant improvements to reliability or validity of 

Likert scales beyond seven levels (Cicchetti et al., 1985; Lissitz & Green, 1975). While the use 

of an ordinal scale to evaluate levels of TIA can be a sufficient (and convenient) means of 

capturing robust data (Wei et al., 2020), in order to achieve the highest quality data, it is 

recommended that any Likert scale be validated alongside an existing TIA instrument before 

scaled use as an autonomous measure, and that scales contain no more than seven rating options. 

Although they tend to offer a higher standard of validity and reliability than a Likert 

scale, 15 of the 29 validated user-reported TIA measures (52 percent) were rated as Cautious 

Recommendations, largely because of poor aeromedical appropriateness. Other than the 

Hypothetical Complacent Behavior measure (Merritt et al., 2015), the Implicit Association Test 

(Merritt et al., 2013), the Negative Attitudes Toward Robots Scale (Nomura et al., 2006), and the 
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Propensity to Trust Machines Scale (Merritt & Ilgen, 2008) (which are included as Cautious 

Recommendations due to the low quality ratings of the studies they were used in), each of the 

validated instruments included as Cautious Recommendations were determined to have low 

levels of aeromedical appropriateness. This is a result of their implementation requiring 

operators to respond to questions during or immediately following automation-assisted tasks; this 

“real-time” operator input interrupts the flight task at hand and introduces additional cognitive 

workload that can impact performance (and subsequently impact TIA itself). To avoid distracting 

interruptions from the tasks, survey data from these instruments can be collected prior to or 

immediately after an aeromedical mission scenario that incorporated automation-assisted tasks. 

For the instruments that are included as Cautious Recommendations due to low ratings of 

research quality, if they are to be included in aeromedical research, it is recommended that they 

be used alongside other validated TIA measures rather than as the sole measure of operator TIA 

to better evaluate their validity as part of a multimodal array. 

TIA Measures that are Not Recommended 

Physiological measures. 

Physiological TIA measures that are Not Recommended for an operational aeromedical 

environment included EEG, fMRI, and skin conductance. All three of these measures were 

derived from studies where research quality was rated below the overall median for all studies 

included in the review (see Table 2), calling into question the reliability of their effectiveness 

across conditions. These measures also presented significant logistical challenges that would be 

difficult or impossible to overcome in an operational aeromedical environment. In the case of 

fMRI, no ambulatory options currently exist, rendering it impossible to use within an aircraft. 

EEG and skin conductance both have some limited options for ambulatory data collection, but 

still frequently require electrodes placed on the scalp and forehead (EEG) or hands (skin 

conductance) to achieve sufficient signal strength. Given the limitations for quality electrode 

placement on the head and hands during flight operations in an aircraft, these measures were 

rated as having low aeromedical appropriateness. 

User-reported measures. 

Three user-reported instruments were determined to be poor fits for aeromedical research 

and have been classified as Not Recommended. These include the Godspeed Measure (Bartneck 

et al., 2009), the Multitasking Preference Inventory (Poposki & Oswald, 2010), and a human-

computer trust measure (Yan et al., 2011). In addition to their use in studies that were determined 

to have research quality below the sample median, these instruments were also deemed to be 

misaligned with aeromedical tasks, automations, and environments. 

Limitations 

While all efforts were made to conduct as thorough a review as possible, this analysis 

does not include an exhaustive account of all research published on TIA. As new studies emerge, 

the findings of this review may not reflect the current state of the science. Given the 

heterogeneity of study designs included in this review, some TIA measures were used as singular 

measures, while more frequently, measures were used as part of a multimodal array. For this 
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reason, scientific quality refers to the quality of the study using each of the measures rather than 

the quality of any singular instrument. The purpose of this review was to identify which of the 

many available measures of TIA showed promise for use in an operational aeromedical 

environment. Recommendation ratings reflect the potential for use in an aeromedical setting and 

are not intended to be interpreted as a rating of the instrument’s general quality as a measure of 

TIA. Future studies should expand upon these recommendations by conducting tests of 

feasibility and validity of the measures in an actual operational setting to determine how each 

instrument performs in an aeromedical context. 

Conclusions 

Although TIA is a complex construct that incorporates behavioral, physiological, and 

psychosocial elements, great advances have been made over the past decade to create valid and 

reliable measures of TIA across multiple domains. Given the unique environmental barriers that 

exist for aeromedical environments, and the critical role of TIA in technology systems that 

require a growing reliance on automation, it is essential that special consideration is given to 

determine which emerging TIA measures can be feasibly and reliably administered in an 

operational aeromedical environment. This review provides strong recommendations for 28 TIA 

measures with high potential of success in aeromedical settings, as well as 23 measures that 

should be used cautiously with expected caveats and six measures that are not recommended for 

use in aeromedical environments. Future research can continue to build upon these 

recommendations by testing each of these measures (and those that emerge) to evaluate their 

feasibility of administration and psychometric fidelity in operational aeromedical settings. 
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Appendix A. Research Quality and Aeromedical Appropriateness Rating Checklists 

Table A1. JORIPIEF-Based Research Quality Checklist Used by the Reviewers 

Quality criteria Not at 

all 

Poorly Sufficiently Well Very 

well 

A case has been made for conducting the 

investigation reported. 
1 2 3 4 5 

The study hypotheses were clearly reported. 1 2 3 4 5 

Sufficient detail has been provided for 

replication of the study to be done. 
1 2 3 4 5 

The internal logic of the research design is 

satisfactory. 
1 2 3 4 5 

The results have been analyzed 

appropriately, correctly, and thoroughly. 
1 2 3 4 5 

There are no serious flaws in the 

presentation of the paper (e.g., language, 

formatting). 

1 2 3 4 5 

The data have been presented effectively 

and in sufficient detail. 
1 2 3 4 5 

The data and analyses were interpreted 

satisfactorily and correctly. 
1 2 3 4 5 

The findings can be sufficiently generalized. 1 2 3 4 5 

The scientific importance of the study has 

been established. 
1 2 3 4 5 

The findings achieve progress with the topic 

matter. 
1 2 3 4 5 

The study competently achieves its declared 

objectives. 
1 2 3 4 5 

There are no grounds for doubting the 

decision to accept the article for publication 

(given the circumstances that applied when 

it was written). 

1 2 3 4 5 

Total of all rating scores 

Overall quality rating (Total / 13) 
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Table A2. Aeromedical Appropriateness Checklist Used by the Reviewers 

Aeromedical appropriateness criteria Not at 

all 

Poorly Sufficiently Well Very 

well 

This measure/instrument physically fits 

within the available space of the aircraft. 
1 2 3 4 5 

This measure/instrument can be 

administered according to its 

instructions/best practices without 

physically disrupting or damaging the 

aircraft. 

1 2 3 4 5 

This measure/instrument can be 

administered according to its 

instructions/best practices without 

distracting crewmembers from their mission 

tasks. 

1 2 3 4 5 

This measure/instrument does not require 

special equipment that must be installed in 

the aircraft. 

1 2 3 4 5 

The quality of the data collected from the 

measure/instrument is not affected by the 

aircraft. 

1 2 3 4 5 

The quality of the data collected from the 

measure/instrument is not affected by the 

crewmember focusing on their mission 

tasks. 

1 2 3 4 5 

Total of all rating scores 

Overall appropriateness rating (Total / 6) 
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Appendix B. Search Terms and Hit Frequency 

Table B1. Number of Hits for Specific Searches During Initial Data Collection 

Database Search terms 

Number of 

hits 

Google Scholar “trust in automation” “trust measures” 608 

“trust in automation” “trust measures” “medical” 238 

“trust in automation” “trust measures” “aviation” 126 

“measure trust in automation” 228 

“measure trust in automation” “medical” 85 

“measure trust in automation” “aviation” 58 

EBSCO measure trust in automation medical aviation (+2013-2023) 1973 

“trust in automation” “trust measures” 133 

“trust in automation” “trust measures” "medical" 15 

“trust in automation” “trust measures” "aviation" 8 

DTIC “measure trust in automation” 10 

“trust in automation” “trust measures” 41 

“trust in automation” “trust measures” “aviation” 20 

“trust in automation” “trust measures” “medical” 18 

Total hits 3561 

Total titles included 207 

Total abstracts included (non-duplicates) 159 

Total full-text articles included 31 
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Appendix C. Lists of User-report and Behavioral Measures with Frequencies. 

Table C1. List of Validated Instruments and Frequency of Use Throughout the Reviewed 

Literature 

Validated instruments Frequency 
Checklist for Trust between People and Automation (Jian et al., 2000) 11 
Complacency-Potential Rating Scale (Singh et al., 1993) 5 
Human Computer Trust Scale (Madsen & Gregor, 2000) 5 
Propensity to Trust Scale (Mayer & Davis, 1999) 4 
Propensity to Trust Machines Scale (Merritt & Ilgen, 2008) 3 
Integrated Model of Trust Scale (Muir & Moray, 1996) 3 
Trust Perception Scale for Human-Robot Interaction (Schaefer, 2016) 3 

Cross-Cultural Automation Trust Scale (Chien et al., 2014) 3 

Human-Robot Interaction Trust Scale (Yagoda & Gillan, 2012) 3 

System Trustworthiness Scale (Schaefer et al., 2012) 2 

Interpersonal Trust Scale (Rotter, 1967) 2 

Propensity to Trust Technology Scale (Schneider et al., 2017) 2 

Perfect Automation Schema (Gibson et al., 2023) 2 

Draper Trust Scales (Jackson et al., 2016) 2 

Implicit Association Test (Merritt et al., 2013) 2 

Trust Scale (Merritt, 2011) 2 

Measures of Trust & Trustworthiness (Mayer & Davis, 1999) 1 

Trust in Automation Scale (Körber, 2019) 1 

Trust & Self-Confidence Scale (Lee & Moray, 1994) 1 

Multitasking Preference Inventory (Poposki & Oswald, 2010) 1 

Adapted Propensity to Trust Questionnaire (Jessup et al., 2019) 1 

Negative Attitude towards Robots Scale (Nomura et al., 2006) 1 

Trust Scale (Lee & Moray, 1992) 1 

Operator Tendency to Trust Automation (Merritt & Ilgen, 2008) 1 

Trust in Automated Systems Test (TOAST) (Wojton et al., 2020) 1 

Dynamic Reporting of Trust (Desai et al., 2012) 1 

Yan Trust Measure (Semsar & Nazari Shirehjini, 2017) 1 

Godspeed Measure (Bartneck et al., 2009) 1 

Hypothetical Complacent Behavior (Merritt et al., 2019) 1 

Muir and Moray Trust Scale (4-item) (Muir & Moray, 1996) 1 

Propensity to Trust Survey (Evans & Revelle, 2008) 1 

Muir and Moray Trust Scale (8-item) (Muir & Moray, 1996) 1 

Multi-Dimensional Measure of Trust (MDMT) (Ullman et al., 2021) 1 
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Table C2. List and Description of Observable Behaviors and Frequency of Use Throughout the 

Reviewed Literature 

Behavioral measures Frequency Description 

Compliance with automation 

recommendations 

11 The operator uses recommendations given by 

the automation 

Reliance 5 The operator makes no attempt to override the 

automation (even when mistakes are made)  

Response time 5 How long it takes the operator to act after a 

prompt or alert from the automation 

Manual verifications 4 The operator confirms the accuracy of an 

automation before taking action 

Economic Trust Game: Stakes invested 3 How much the operator is willing to risk/bet on 

an automation’s accuracy (often reported as a 

monetary amount) 

Delegation 3 Allowing automation to handle a task when the 

operator could do it manually 

Intervention 3 Overriding automation/taking manual control 

(even when the automation is accurate) 

Behavioral synchrony and entrainment 3 The operator begins to model behaviors or 

communication styles similar to the automation 

Combined team performance 3 Objective scored performance on the 

automation-assisted task being completed by 

the operator 

Proximity 2 The operator’s physical closeness to an 

automation technology (used most often with 

robots) 

Communication: Bag of Words 1 Computerized language model that analyzes 

sematic content of communications between 

the operator and automation 

Communication: Bottom-up measures of 

communication content 

1 Similarity of communication tone between the 

operator and automation 

Communication: Flow 1 How often the operator and automation are 

communicating with each other 

Communication: Network analysis 1 A computer modeling output of the 

communication flow and rate between the 

operator(s) and automation 

Communication: Rate 1 The frequency and duration of interactions 

between the operator and automation 

Communication: Real-Time Event, 

Flow, and Coordination Tool 

(REFLECT) 

1 Computerized tool for visualizing the flow, 

content, and event coordination between 

operators and automations during a task 

Communication: Top-down measures of 

communication content 

1 Similarity of content being discussed between 

the operator and automation 
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