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Preface 

Wearable devices are sensors that can be worn on the human body for the purpose of 

measuring physiological metrics (e.g., heart rate, temperature, activity, etc.), exposure to an 

individual (e.g., radiation or blast overpressure), or kinematic motion of an individual or body 

region (e.g., head motion resulting from blunt impact, etc.). Wearable devices include a wide 

range of sensors to measure specific parameters depending on the design and intent. The present 

report is focused on wearable devices designed to measure head acceleration events (HAEs) 

resulting from either blunt impact to, or inertial motion of, the head that may be related to 

potentially concussive events (PCEs). The devices can be incorporated into helmets, 

mouthguards, skin patches, or headbands/skull caps. 

Wearable devices for monitoring HAEs and PCEs are designed to measure head motion 

resulting from blunt impacts (e.g., helmet to helmet strikes in football; boxing punches; falls to 

the ground; head impact to a vehicle structure during an accident; etc.) or from inertial motions 

(e.g., whiplash, parachute opening shock, falls to the ground with no physical contact, etc.). Head 

motion is characterized by the measurement of linear and rotational (or angular) acceleration and 

velocity about three primary axes (Figure 1). The devices commonly measure linear acceleration 

and rotational velocity where the device is located (e.g., in the mouth, on the surface of the head, 

or in the helmet), and then the measured data are converted to represent the motion of the head 

center of gravity (CG) using engineering principles of rigid body dynamics (see Brown et al., 

2021). 

 

 

+ z 

+ x 

+ y 

Local head coordinate system with three primary axes at head center of gravity. 

Measurements of linear motion along each axis and rotational motion about each axis describe 

head motion measured by the devices. 

Many devices have been developed by both the Department of Defense (DoD) and 

commercial entities. The Head Impact Telemetry System (HITS) (developed by Simbex in 2004) 

was one of the earliest devices to be used widely. The HITS enabled on-field measurement of 

dynamic events in football (and later hockey) using a wireless system for the first time and has 

been cited in more than 100 scientific papers investigating brain injury and concussion (for 

review, see Le Flao et al., 2022; O'Connor et al., 2017; Patton et al., 2020). Similar helmet-based 

wearable devices to monitor real-time exposures relating to brain health in the military were 

developed following a 2007 directive from the Vice Chief of Staff of the Army, requiring that 
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Soldier combat helmets be fitted with technologies to sense and record helmet response to 

potentially concussive dynamic events. As a result of this order, two generations of helmet-

mounted sensors (HMS) were fielded to deployed troops, and data were collected from helmet 

exposures. However, no clinical or field guidance was provided regarding how to use or interpret 

the data provided by the HMS units. Several technological limitations in both the HITS and the 

HMS systems have contributed to large amounts of uncertainty in the data collected. The 

primary technological limitations include (1) the inability to reliably identify false events (e.g., 

helmet or device motion with no head motion); (2) estimating the resulting head motion from the 

helmet-mounted sensor data; and (3) the inability to reliably time stamp events to link them with 

diagnosed or suspected concussions (Rooks et al., 2023; O'Connor et al., 2017; Rooks et al., 

2015; Siegmund et al., 2016). 

In 2014, the first study with a commercially available head impact monitoring system 

other than the HITS was published (Figure 2; Le Flao et al., 2022). Since 2014, greater than 100 

peer-reviewed papers have been published using a variety of head impact monitoring systems 

(Figure 2), including skin patches, mouthguards, in-ear sensors, helmet-mounted sensors, and 

headbands or skullcaps (Le Flao et al., 2022; O'Connor et al., 2017; Patton, 2016). With the 

significant rise in commercially available technology, and the associated rise in research being 

performed, several challenges in research methodology have become apparent. One challenge in 

particular is determining the accuracy of the devices when measuring severity of impact and the 

ability of the devices (or researcher) to determine whether a reported event was truly the result of 

head motion or was a false-event, resulting from the device being impacted or moving 

independently of the head. The limited use of video verification of HAEs and accurate tuning of 

false-positive rejection algorithms has been a critical gap in the advancement of the state of the 

science for head impact monitoring programs (Kuo et al., 2022; Patton et al., 2020). 

Number of publications by technology between 2004 and 2019. Figure adapted (with 
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permission) from Le Flao et al. (2022). Highlighted in the figure is the sharp rise in publications 

in 2012, followed by the first publication from non-HITS devices and the subsequent rise in 

publications using skin patches, headbands, and mouthguards. 
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To prioritize data being captured from blunt impacts or inertial motions, the devices use a 

combination of trigger thresholds (i.e., collecting data only if peak linear acceleration or peak 

rotational velocity in any axis exceed a threshold) and false-positive filtering algorithms (Kuo et 

al., 2022; Le et al., 2023; Patton et al., 2020). A common challenge for interpretation of data 

from wearable devices is ensuring that data captured are the result of true head impacts or 

accelerations of interest (i.e., true events reporting device motion resulting from head motion) 

versus false events (e.g., those resulting from a device being impacted, or device motion with no 

head motion). In addition to false events, the wearable devices may capture low-severity events 

that are the result of head motion but are not indicative of a PCE. In general, these “activities of 
daily living” are below 10 to 15 g peak resultant linear acceleration. Examples of activities of 
daily living (ADL) type exposures include low severity bumps or taps to the head, inertial head 

motions of the head from running or jumping type activities (e.g., jumping jacks), or doing other 

types of physical activity (Bussone, 2005; Funk et al., 2011; Hernandez & Camarillo, 2019; 

Miller et al., 2020). 

Blunt impacts and inertial motions resulting in head motion are commonly referred to as 

either head impacts or HAEs. A head impact is generally defined as a measured HAE with 

greater than 10 g peak linear acceleration (PLA) at the head CG. An HAE with PLA less than 

10 g are considered minor kinematic motions representative of ADL described above. While 

ADL may reach up to 15 g, a threshold of 10 g is commonly employed as a conservative 

estimate to capture low-severity head impacts that may be of interest for repetitive exposures 

(Kuo et al., 2022; Le Flao et al., 2022; Le et al., 2023). 
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Introduction 

Within the military, it has been estimated that nearly 20 percent of Service Members 

deployed to Iraq or Afghanistan have sustained at least one mild traumatic brain injury (mTBI) 

(Stein et al., 2016). The TBI Center of Excellence (TBICoE) tracks the number of diagnosed 

TBIs across the Department of Defense (DoD) with data available starting in the year 2000 

through Quarter 1 of 2023. The TBICoE reports that a total of 479,953 TBIs of all severities 

have been diagnosed in that time. Of these, 82.3% (394,591) were classified as mild (TBICoE, 

2023). The number of documented TBIs peaked in 2011, with greater than 30,000 diagnoses in 

the year (greater than 25,000 were classified as mild). In 2013, it was recognized that an 

estimated 80% of TBI diagnoses were made in a nondeployed (i.e., Garrison) setting (Helmick et 

al., 2015). TBI diagnoses in nondeployed settings may be the result of vehicle crashes (private or 

military-owned), falls, sports and recreational activities, or military training. 

The TBICoE refers to mild TBI (mTBI) and concussion as synonymous in their 

reporting. Immediate symptoms associated with mTBI (concussion) include loss of 

consciousness lasting less than 30 minutes, alteration of consciousness lasting less than 24 hours, 

or post-traumatic amnesia lasting up to 24 hours (O'Neil, 2013). Comparatively, moderate to 

severe TBI is characterized by increased severity of symptoms, notably longer durations of loss 

or alteration of consciousness and positive results on medical imaging (e.g., computed 

tomography [CT] or magnetic resonance imaging [MRI]) (TBICoE, 2023; McCrory et al., 2017; 

Patricios et al., 2023). For all severities of TBI, symptoms may last from a couple of days to 

multiple years following the injurious event. Moreover, repeated TBIs may result in more severe 

and long-term consequences (Caccese et al., 2019; Patricios et al., 2023). Multiple mTBIs could 

potentially increase the risk of neurodegenerative disorders (McAllister & McCrea, 2017); while 

no link has definitively been established between Alzheimer’s disease and repetitive mTBI, 

earlier onset of Alzheimer’s was observed in a study of retired football players versus the general 

population (Guskiewicz et al., 2005). 

The need for early and accurate diagnosis of mTBI has been well recognized and has 

implications for return-to-duty timelines (Asken et al., 2018; Asken et al., 2016; Meehan III et 

al., 2013; Stein et al., 2016). Additionally, the need for guidance on when military personnel 

should seek or be directed to seek evaluation and treatment (if needed) has been a consideration 

of DoD policy for concussion management (Department of Defense Instruction [DoDI] 6490.11; 

Headquarters Department of the Army [HQDA] Executive Order [EXORD] 165-13; Warfighter 

Brain Health [WBH] DOTmLPF-P Change Request [DCR] and Initial Capabilities Document 

[ICD]). 

While concussion management and education have significantly improved in recent years 

through the efforts of multiple research programs, policy updates, and educational programs, 

there is still a concern over the possibility of injuries in Soldiers and athletes to be missed 

(Meehan III et al., 2013). Diagnoses for concussion may be missed through (1) a lack of self-

reported exposure; (2) Soldiers and athletes intentionally performing poorly on baseline 

assessments (e.g., “sandbagging”) in order to improve their chances of passing a concussion 

assessment post-injury; or (3) intentionally responding to screening questions in a way to 

guarantee a negative concussion screening without further assessment (Hainsworth et al., 2023; 

Higgins et al., 2017; Rizzo et al., 2021). Several efforts to minimize the effects of sandbagging, 
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or avoiding the screening questions, have been attempted; however, there remains a need for an 

objective indicator of PCEs to ensure Soldiers and athletes are appropriately assessed and enter 

treatment as early as possible. 

Over the past two decades, civilian and military researchers and clinicians have attempted 

to leverage wearable devices to monitor head impact exposures in situ (see Preface) to develop a 

dose-response model for mTBI and concussion. However, research efforts have largely been 

unable to come to a consensus for a threshold or dose-response relationship of concussion. The 

lack of consensus is likely caused by concerns over the number of falsely predicted concussions 

(i.e., the false-positive rate) of many proposed metrics combined with the large number of 

concussions occurring at low severities (O'Connor et al., 2017; Rowson et al., 2018; Siegmund et 

al., 2021; Stemper et al., 2019; Tierney, 2022). In 2017, the Fifth International Conference on 

Concussion in Sport noted the limited utility of wearable devices (helmet-based or not) for 

clinical applications, citing the continued debate over the accuracy and precision of head 

kinematic measurements, with reported peak linear and rotational acceleration values varying 

widely in concussed individuals (McCrory et al., 2017). 

Several helmet- or head-mounted wearable devices have been developed by the DoD and 

commercial entities to quantify head impact exposures and detect PCEs. As noted in the Preface, 

the advancement and development of technology, as well as the amount of research, has 

significantly accelerated in recent years (Figure 1). As a result, the limitations of wearable 

devices noted by the Fifth International Conference on Concussion in Sport may have been 

overcome, enabling the definition of clinically useful dose-response relationships between 

exposure and risk of injury or potential injury (Arbogast et al., 2022; Arbogast et al., 2023). 

The Military Operational Medicine Research Program (MOMRP) funded the 

Environmental Sensors in Training (ESiT) research program to address the challenges of 

introducing wearable devices (i.e., environmental sensors) capable of monitoring HAEs or blast 

exposures in military environments. A major goal of the ESiT research program was to evaluate 

the ability of commercially available devices to identify PCEs resulting from head acceleration 

or blast exposures. The present report summarizes the results of the U.S. Army Aeromedical 

Research Laboratory (USAARL)-led accelerative exposure arm of the ESiT research program 

aimed at developing a dose-response relationship for identifying PCEs with wearable device 

data. 

Methods 

To investigate the development of an acceleration-based dose-response relationship, data 

were analyzed from three distinct research efforts, the ESiT Core study, the ESiT United States 

Military Academy (USMA) study, and the Prevent Biometrics study. The ESiT Core study 

collected HAE data during training at the basic airborne course (BAC) and combatives master 

trainer course (CMTC) using multiple wearable devices. In addition, the ESiT Core study 

collected neurophysiological performance assessments from all volunteers at the end of each 

week of training (BAC) or following each sparring session (CMTC). For additional details on the 

BAC and CMTC courses, see Appendix A. The ESiT USMA study collected HAE data during 

men’s and women’s rugby, and during introductory boxing courses using the Prevent Biometrics 

impact monitoring mouthguard (IMM) (Prevent Biometrics, Minneapolis, MN, US). In addition 
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to the HAE data, the ESiT USMA study captured concussion diagnoses from enrolled subjects 

(diagnoses were performed by clinical providers). Finally, the Prevent Biometrics study, funded 

through a broad agency announcement (BAA) grant (contract number W81XWH-17-01-0019), 

collected HAE data from multiple military and athletics environments (the military environments 

are the focus of the present report) (Bartsch et al., 2022). The Prevent Biometrics study was a 

collaboration with USAARL, and the results are being leveraged by the ESiT research program. 

Data were collected by Prevent Biometrics in several military training environments (airborne, 

combatives, and boxing) but without neurophysiological performance measures. All PCEs were 

based on video-observed indicators of concussion characterized by a consensus guide for sideline 

medical spotters to identify individuals at risk of concussion through video or observation (Davis 

et al., 2019). 

ESiT Core Study 

The study was reviewed and approved by the U.S. Army Medical Research and 

Development Command Institutional Review Board (IRB). Data were collected during the BAC, 

which taught Service Members to conduct static line parachute operations, and during the 

CMTC, under the Modern Army Combatives Program, which taught Service Members close-

quarters hand-to-hand combat. Service Members attending the BAC and CMTC were recruited, 

consented, and received baseline neurophysiological assessments on their in-processing day, or 

at the start of the training course, prior to any drills involving the potential for HAEs. Subjects in 

the BAC received follow-up evaluations at the completion of each week of training for a total of 

four evaluations. Subjects in the CMTC received follow-up evaluations following each sparring 

session, averaging two per week, for three weeks. Baseline and follow-up evaluations for both 

the BAC and CMTC included the Military Acute Concussion Evaluation (MACE) and 

completion of a virtual reality (VR)-based assessment platform (integrated Display Enhanced 

Testing for Cognitive Impairment and mTBI [iDETECT]; Georgia Tech Research Institute 

[GTRI], Atlanta, GA). The iDETECT platform is a VR-based neurological performance 

assessment, including a neuropsychological test battery, a non-postural balance/sensory 

integration test battery, and a vestibular and oculomotor test battery (Figure 3). Additionally, 

subjects completed the military version of the Post-Traumatic Stress Disorder Check List-

Military (PCL-M) and a concussion history questionnaire during the baseline assessment 

(Bernhardt et al., 2019; Kelley et al., 2021). Detailed methods and descriptions of the baseline 

and follow-up assessments are available in Bernhardt et al. (2019) and Kelley et al. (2021). 

For both the BAC and CMTC, volunteers were instrumented with two head-mounted 

wearable devices to record HAEs. The commercially developed X2 Biosystems xPatch and the 

BlackBox Biometrics®, Inc. Linx (Appendix B) were originally designed for athletics 

applications and are capable of measuring head accelerations and rotations through internal 

sensors and storing the data locally for retrieval at the end of the exercise or upon connection to a 

Bluetooth-enabled device (for the Linx only). The two devices used in this study (1) can measure 

linear accelerations and angular rates of the head in three axes; (2) allow the ability to download 

the data and view the impact (either through wired or wireless methods); and (3) are compatible 

with existing personal protection equipment and equipment for both the BAC and CMTC (Rooks 

et al., 2023). Metrics reported by the xPatch and Linx include resultant peak linear acceleration 

(PLA), resultant peak rotational acceleration (PRA), and resultant peak rotational velocity 

(PRV). All metrics were reported as estimates at the head CG using rigid body kinematics 
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transforms implemented by the device manufacturers. A third (helmet-based) wearable device 

was tested with the BAC volunteers; however, these data are not included in the present report 

due to incompatibility in the CMTC course, as well as limited data available for analysis in the 

BAC (Rooks et al., 2023). 

GTRI’s VR-based integrated Display Enhanced Testing for Cognitive Impairement 

and mTBI (iDETECT) neurophysiological performance assessment device (left) allowed quick, 

focused individual assessments (e.g., non-postural balance/sensor integration test; right) 

immediately following training without the need for computer infrastructure and limiting the 

influence of external stimuli. 

To screen out non-HAE datasets, volunteers from both the CMTC and BAC were 

videotaped during the drills to visually identify and verify that an HAE occurred. Within the 

BAC, wearable device data and video were both synchronized to a National Institute of 

Standards and Technology traceable time source (www.time.gov). For the BAC dataset, time-

synchronized video was reviewed to identify instances where the volunteers hit their heads 

against the ground or another surface. The timing of each video-identified head impact was 

marked and then compared with device data from the xPatch and Linx devices. Wearable device 

HAEs occurring at the same time as an observed event on video were then used for further 

analyses. 

A similar approach was attempted during the CMTC courses; however, errors 

synchronizing time between the wearable devices and video at the time of collection limited the 

ability to complete video verification of HAEs for that dataset. While video verification was not 

possible for the CMTC dataset, the measured HAEs were analyzed for quality based on signal 

characteristics and through in-house machine learning classification algorithms. For the current 

analyses, “good” HAEs were characterized by a bell curve shape with smooth transitions, limited 

spikes, no DC offset (i.e., no amplitude displacement from zero), and pre-trigger data. While 

“bad” HAEs were characterized by single or multiple short duration spikes (less than 1 or 2 

milliseconds), significant DC offset with no additional response, or substantial noise in the signal 

representative of the device moving independently of the head. In addition, the xPatch data were 

classified as “good” or “bad” using a previously developed machine learning algorithm with 

improved performance over the manufacturer’s classification algorithm (Rooks et al., 2019). 
Finally, as the xPatch device provides both raw data and processed data, HAEs were excluded 

from the analysis if the reported peak acceleration (from the xPatch system) did not match in-

house processed peak accelerations. Several HAEs contained markers of both “good” and “bad” 
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events and were classified as a third level, “questionable.” The “questionable” events were also 

excluded from our current analysis to limit the potential for false-events to affect the data 

analysis. Following data cleaning procedures to obtain “good” HAEs for both the BAC and 

CMTC, data were checked for impossible values or technical errors that remained prior to 

statistical analyses. 

Detailed methods for data analysis from the ESiT Core study with the BAC data 

collections are described in Kelley et al. (2021) (statistical analyses) and Bernhardt et al. (2019) 

(neurophysiological performance assessments). Briefly, the “good” HAEs were inspected for 

normality and assumptions of parametric tests prior to analyses. Relationships between wearable 

device outputs for “good” HAEs and performance outcomes on the non-postural balance tasks 

from the iDETECT VR platform (GTRI, Atlanta, GA) were assessed using Pearson’s r 

correlation coefficients (Kelley et al., 2021). The alpha level for analyses was set at p = 0.05. 

Non-postural balance performance outcomes required normalization to individual performance 

for analysis. Non-postural balance performance outcomes from weeks 1 and 2 (see Appendix A 

for details on training weeks) were normalized to the baseline performance (i.e., baseline-

adjusted data) to control for individual differences and measure changes from baseline. 

Additionally, performance outcomes from week 2 were normalized to values recorded at the end 

of week 1 (i.e., week 1-adjusted data) to control for any changes in performance between 

baseline and week 1. Next, for each wearable device (i.e., Linx and xPatch), the Pearson’s r 

correlation coefficients between the device data (e.g., number of impacts, mean and maximum 

values of peak linear acceleration, peak rotational acceleration, and peak rotational velocity) and 

baseline- and week 1-adjusted performance were calculated. Due to challenges verifying the 

measured data (i.e., confirming “good” events), performance outcomes at the end of week 3 were 

not used. Sensor data for weeks 1 and 2 included head impacts incurred in the 3 days prior to 

testing. Given the discrepancies between the outputted data between the two devices, 

correlational analyses were conducted separately for each (Kelley et al., 2021). 

In addition to the above analyses, a subsequent analysis of the BAC data was completed; 

a hierarchical regression analysis was used to determine the ability of the wearable devices to 

predict neurophysiological performance deficits. The CMTC data were also analyzed following 

similar methods; however, analyses are ongoing to refine these data further. 

ESIT USMA Study 

The ESIT USMA study was reviewed and approved by the Naval Medical Center 

Portsmouth IRB Office. Data were collected during men’s and women’s spring and fall rugby 

practices and games and during required introductory boxing courses for cadets. Rugby data 

were collected during the fall and spring semesters of 2019 and 2020. Boxing data were collected 

during the fall and spring semesters of 2021. HAEs were measured using the “boil-and-bite” 
IMM developed by Prevent Biometrics (Prevent Biometrics, Minneapolis, MN, US; Appendix 

B). As the IMM system matured, multiple versions of the device were used under the ESIT 

USMA study. The first three seasons of rugby data collection were completed by an older 

version of the IMM (v1.0) that did not include a robust false-positive rejection algorithm. Data 

from the final rugby season and the boxing courses were collected with a newer IMM (v1.4) that 

included a proximity sensor to detect when the device is worn on the teeth. The combination of 

the proximity sensor and signal classification techniques based on signal characteristics (e.g., 
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frequency content, duration, magnitude, etc.) significantly improved the performance of the 

Prevent Biometrics (Minneapolis, MN) false-positive rejection algorithm (Fetchko et al., 2022). 

In addition to the false-positive rejection algorithms used, the IMM data from both rugby and 

boxing were video reviewed to verify that HAEs were true events and not false positives 

(additional details for the video verification methods are described in Fetchko et al. [2022] and 

Fetchko et al. [2023]). 

For both rugby and boxing environments, all volunteers were monitored for HAEs, and 

only those with a clinically diagnosed concussion received further neurophysiological 

performance assessments. For the present report, only the diagnosis of concussion was 

considered (versus the additional neurophysiological performance assessments) due to the 

limited sample size of subjects with a concussion who were wearing an IMM that provided 

“good” data. 

Prevent Biometrics Study 

Data collected in the Prevent Biometrics study were collected through two primary 

protocols that were reviewed and approved by either the Medical College of Wisconsin IRB or 

the U.S. Army Medical Research and Development Command (USAMRDC) IRB (both 

protocols received USAMRDC Human Research Protections Office review). All HAEs were 

measured using the “boil-and-bite” IMM developed by Prevent Biometrics (Prevent Biometrics, 

Minneapolis, MN; Appendix B). The IMM is worn on the upper dentition and is custom fit to 

each volunteer. Subjects were recruited from activities across multiple military training 

environments (parachute operations, combatives, and boxing) with a potential risk of head 

impact exposure. 

To screen out non-HAE data sets, video and IMM hardware were used to confirm that an 

HAE occurred on video and that the IMM was on the teeth during the HAE at the time in the 

video. Metrics reported for each HAE captured by the IMM include resultant PLA, resultant 

peak linear velocity (PLV), resultant PRA, and resultant PRV. All metrics were reported as 

estimates at the head CG using rigid body kinematics transforms implemented by the device 

manufacturer. 

No neurophysiological performance measures were collected during the study; however, 

during video review to verify the presence of head impact exposures, observed indicators of 

potential concussion were identified by trained staff at Prevent Biometrics. Video reviewers 

identified the indicators of concussion according to documented guidelines for video review used 

by independent sideline medical personnel from multiple professional sporting leagues (Bartsch 

et al., 2020; Davis et al., 2019). Video verification methods for identifying observable indicators 

of concussion included a range of visible signs indicative of a potentially concussive event 

(Table 1). 

This space is intentionally blank. 
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Table 1. Video Observation of Concussion – Sideline Spotter Categories 

• convulsion 

• tonic posturing
Immediate 

• suspected loss of consciousness 
incapacitation 

• confirmed loss of consciousness 

• clearly dazed (i.e., blank or vacant look) 

• ataxia 

• slow to get up
Altered balance or 

• gross motor instability 
movement 

• functional disturbance (i.e., staggering, stumbling, tripping, falling) 

• movement (i.e., slow, labored, abnormal, or unstable movement) 

• head clutch 

Atypical behaviors • confusion/disorientation 

and other signs • irregular action (e.g., line up on wrong side, avoiding contact, unsure 

of location, etc.) 

• seeks out caregivers 

Results 

ESiT Core Study 

Within the BAC, data were collected from 40 subjects. The xPatch device recorded 4246 

total HAEs; 654 ultimately were matched with a confirmed event on video. Of the 654 HAEs, 

417 were then confirmed as “good” HAEs with quality signal traces. Per subject, the xPatch 

recorded between 1 and 38 good HAEs, with one subject having no “good” HAEs matched to the 

video. From the “good” HAEs, the mean resultant PLA (14.5 ± 5 g) and the mean resultant PRV 

(12.8 ± 7.7 radians per second [rad/s]) were calculated (Figure 4). The maximum resultant PLA 

was 43 g (with a resultant PRV of 27 rad/s) and the maximum resultant PRV was 47 rad/s (with 

a maximum resultant PLA of 17 g). 

The Linx device recorded 265 total HAEs; 96 ultimately were matched with a confirmed 

event on video. Of the 96 HAEs, 47 were then confirmed as “good” HAEs with quality signal 

traces. Per subject, the Linx recorded between 1 and 17 good HAEs (notably, 22 of the 40 

subjects had zero HAEs recorded). From the identified good HAEs, the mean resultant PLA 

(86.5 ± 29 g) and the mean resultant PRV (24.8 ± 7.4 rad/s) were calculated (Figure 4). The 

maximum resultant PLA was 172 g and the maximum resultant PRV was 42 rad/s (both maxima 

from the same event). 

This space is intentionally blank. 
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Range of resultant PLA and resultant PRV for “good” HAEs measured by the xPatch 

device (orange) and Linx device (blue) from the BAC. The differences in PLA and PRV between 

the xPatch and Linx is visualized through the scatter plot of PLA versus PRV with histograms of 

the frequency of PLA or PRV magnitudes on each axis, respectively. No concussions were 

diagnosed or suspected for the BAC dataset. 

Results and detailed methods from the ESiT Core BAC data collection can be found in 

our previous work (Kelley et al., 2021). A review of the major resulting relationships between 

kinematics and performance are described below. For the xPatch, Pearson’s r correlation showed 

a negative relationship between maximum resultant PRV (r(33) = -0.41, p = 0.018), as well as 

the number of impacts (r(33) = -0.46, p = 0.007), and week 1 and week 2 (baseline-adjusted) 

non-postural balance performance. This suggests that greater resultant PRV values and increased 

number of impacts corresponded to decreased performance. Additionally, number of impacts 

was negatively correlated with week 1 and week 2 (baseline-adjusted) (r(33) = -0.45, p = 0.003) 

and week 2 (week 1-adjusted) non-postural balance performance (r(33) = -0.44, p = .010) 

(Kelley et al., 2021). For the Linx, maximum resultant PLA and resultant PRV correlated with 

week 2 (week 1-adjusted) non-postural balance performance such that greater HAE values 

corresponded to decreased performance; r(12) = -0.63, p = 0.03, and r(12) = -0.60, p = 0.04, 

respectively. Additionally, the mean resultant PRA correlated with week 2 (week 1-adjusted) 

performance such that greater HAE values corresponded to decreased performance, 

r (12) = -0.67, p = 0.01 (Kelley et al., 2021). 

Subsequent analyses of the xPatch and Linx data versus the week 1 (baseline-adjusted), 

week 2 (baseline-adjusted) and week 2 (week 1-adjusted) non-postural balance performance 

were completed to investigate whether the HAE data from the xPatch or Linx devices are 
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predictive of performance deficits. Hierarchical linear regression models predicting performance 

on the non-postural balance task in the most challenging condition showed mean peak rotational 

acceleration measured by the xPatch device to be a significant predictor such that performance 

decreased with increases in PRA (standardized Beta = 1.07, p = 0.01). This finding was limited 

to the xPatch data and was not replicated with the Linx data. 

Within the CMTC, data were collected from 32 subjects. The xPatch device recorded 

7756 total HAEs; 1047 were classified as “good” through our custom machine learning 

algorithm. Of the 1047 HAEs, 626 were then confirmed through additional review of the data 

(instead of video analysis). Per subject, the xPatch recorded between 3 and 70 HAEs. The mean 

resultant PLA (13.0 ± 3.8 g) and the mean resultant PRV (14.3 ± 6 rad/s) were calculated (Figure 

5). The maximum resultant PLA (50.4 g) and the maximum resultant PRV (57 rad/s) were from 

the same event. 

The Linx device recorded 806 total HAEs; 648 were classified as “good” through a 

secondary review of the data (instead of video analysis). The Linx recorded between 2 and 134 

HAEs per subject. The mean resultant PLA (49.4 ± 16.4 g) and the mean resultant PRV (17.8 ± 

7.0 rad/s) were calculated (Figure 5). The maximum resultant PLA was 121 g (with resultant 

PRV of 21 rad/s) and the maximum resultant PRV was 65 rad/s (with resultant PLA of 88 g). 

Three subjects from the CMTC cohort were referred to the local clinic for a concussion 

evaluation during the course. The final clinical diagnoses were unavailable to the research team. 

Of the three subjects referred for evaluation, two had HAE data available for analysis (Figure 5; 

Table 2). The third subject had no data recorded by the Linx device, and all data from the xPatch 

device were classified as “bad” through both the machine learning classification algorithm and 

secondary review. For Subject 1, the xPatch and Linx each captured three HAEs classified as 

“good” on the day of the suspected concussion. For Subject 2, the xPatch captured seven HAEs 

classified as “good,” while the Linx captured three HAEs classified as “good” on the day of the 

suspected concussion (Table 2). 

Preliminary analyses of baseline-adjusted non-postural balance performance from 

subjects in the CMTC correlated with HAE data from the xPatch and Linx devices show similar 

trends to the BAC, an increased number of impacts and increased rotational severity correlated 

with decreased performance. Analyses are ongoing to further refine these data. 

This space is intentionally blank. 
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Table 2. Summary Data for HAEs Classified as “Good” From the Days of Suspected 

Concussions for Two Subjects 

Device HAE PLA (g) PRV 

Number* (rad/s) 

1 26.1 18.0 

xPatch 2 9.5 9.1 

3 11.9 10.3 
Subject 1 

1 28.6 10.6 

Linx 2 51.0 21.6 

3 72.9 22.2 

1 21.6 24.9 

2 9.8 11.5 

3 12.6 17.6 

xPatch 4 23.4 21.7 

5 9.4 15.5 
Subject 2 

6 20.7 34.8 

7 12.4 18.7 

1 46.7 12.9 

Linx 2 30.9 8.2 

3 34.3 12.5 
*Note. HAE number is a generic representation of the number of “good” events matched to video 

and are not comparable between the xPatch and Linx devices. 

This space is intentionally blank. 
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Range of PLA versus PRV for “good” HAEs measured by the xPatch device (orange) 

and Linx device (blue) from the CMTC. The differences in PLA and PRV between the xPatch 

and Linx is visualized through the scatter plot of PLA versus PRV with histograms of the 

frequency of PLA or PRV magnitudes on each axis, respectively. In addition, the head 

acceleration events associated with suspected concussions from two subjects are shown in black 

“x” and black “+” symbols. 

ESiT USMA Study 

Results and detailed methods from ESiT USMA study with the rugby (subset of the 

men’s data only) and boxing data collections at the USMA are described in Fetchko et al. (2022) 

and Fetchko et al. (2023). A total of 431 “good” HAEs were collected from 33 rugby players (12 

men and 11 women) across three seasons. Boxing data were collected from 22 male volunteers, 

with a total of 809 “good” HAEs recorded. In this current work, we further examined the cases 

of reported concussion from both datasets. The rugby dataset included five subjects who 

sustained a concussion. However, only two subjects had data available from the day of the 

suspected concussion. For the two concussions with available data, no video-verified impacts 

greater than 30 g were identified. Due to repeated issues with mouthguard compliance (e.g., 

mouthguards not worn for all drills, games, etc.) and mouthguard performance (e.g., devices not 

working or storing data), the remaining three concussion cases had no associated data available 

and further analyses were not possible. 
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In addition to the reported rugby concussions, there was one concussion documented 

within the boxing dataset. Both IMM data and video data (enabling video verification of HAEs) 

were available on the day of the suspected concussion. Additional details are described below as 

a case study of the boxing concussion with a low-magnitude HAE. 

The subject presented with persistent headache symptoms that worsened when studying 

and viewing computer screens. The subject was an intramural athlete and was enrolled in the 

boxing class. The subject had no prior history of concussion and no previous contact sporting 

experience. The suspected day of injury was the third session of light contact drills and the 

second session of live sparring in the boxing course. The bouts consisted of two rounds lasting 

45 and 35 seconds, respectively. The subject was matched to a similarly sized and skilled 

opponent for the sparring bout at the time of the suspected injury. Three days after the day of the 

suspected injury, the subject visited the clinic and reported symptom onset occurring 

approximately 10 minutes after the bout, but anticipated symptoms would resolve. Upon review 

of the study video of the day, there were no visible signs of concussion after the bout. There were 

no HAEs over 10 g during the first sparring session. The IMM data for the injured subject 

included only four HAEs greater than 10 g (12.0 g and 10.1 rad/s; 12.2 g and 9.4 rad/s; 12.3 g 

and 12.0 rad/s; and 15.8 g and 3.8 rad/s) that were video matched. An additional 13 HAEs with 

resultant PLA between 5 g and 10 g were recorded and matched with video (resultant PRV 

ranged from 2.5 to 10.5 rad/s). During the pre-sparring light contact instructional drills, the IMM 

recorded an additional three HAEs with resultant PLA of 10.1, 11.0, and 15.2 g and resultant 

PRV of 7.6, 4.4, and 5.3 rad/s. The video analysis recorded a total of 24 potential head impacts, 

with none being remarkable, or resulting in any “obvious performance deficits” or behavioral 

changes. 

Prevent Biometrics Study 

Data were collected from 573 subjects across military environments, with a total of 

29,274 HAEs recorded. The 29,274 HAEs included 18,999 (65%) ADL (HAE < 10 g) level 

exposures and 10,275 (35%) head impact exposures (HAE > 10 g). Of the 10,275 head impact 

exposures, 19 were identified as associated with potential indicators of concussion on video. Of 

the 19 observed indicators of concussion, 1 was a suspected loss of consciousness, 8 were 

suspected alterations of consciousness (e.g., clearly dazed, confused, or showing behavioral 

changes, etc.), and the remaining 10 included suspected loss or alteration of consciousness but 

with lower confidence (e.g., second-hand reports or uncertainty in video review). The 19 head 

impacts with associated indicators were all high severity in terms of peak linear response; 

however, there was more spread in peak rotational responses (Figure 6). Per subject, the IMM 

recorded as few as one event (e.g., a single parachute landing fall) and up to 868 HAEs (e.g., 

multiple combatives or boxing sparring sessions). The mean resultant PLA (16.4 ± 6.9 g) and the 

mean resultant PRV (7.5 ± 4.1 rad/s) were calculated (Figure 6). 

This space is intentionally blank. 
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Range of PLA versus PRV for all HAEs greater than 10 g and for HAEs with 

associated video indicators of potential concussion (red squares) from the impact monitoring 

mouthguard (IMM). Axes include histogram responses of each variable with kernal density 

estimates (red lines) of the distribution. All HAEs with observed indicators of concussion were 

greater than 40 g or 6.4 rad/s. 

Discussion 

The present report summarizes results from the USAARL-led accelerative exposure arm 

of the ESiT research program. Data were collected between 2015 and 2021 through two main 

efforts (ESiT Core and ESiT USMA studies) and one leveraged effort (Prevent Biometrics 

study). The ESiT Core study used two wearable devices to capture HAEs from each volunteer. 

One device used an adhesive patch to attach the device to the skin at the mastoid process (X2 

Biosystems xPatch) and the other used an elastic headband with the device embedded 

(BlackBox® Biometrics Linx). The ESiT USMA and the Prevent Biometrics studies used a 

mouthguard-based device for all volunteers (Prevent Biometrics IMM). Data were collected from 

approximately 700 volunteers across all studies with fewer than 30 concussions or PCEs noted. 

The use of multiple devices on all subjects within the ESiT Core study is unique 

compared to many studies employing wearable devices to monitor HAEs. Many studies use one 

device and report on the range of exposures from that device (Le Flao et al., 2022; O'Connor et 

al., 2017; Patton et al., 2020). For HAEs measured from both the BAC and CMTC populations, 

there were clear differences in the ranges of resultant PLA and resultant PRV between the xPatch 

and Linx devices (Figures 3 and 4) as well as the distribution of HAEs for both resultant PLA or 

resultant PRV magnitudes (Figures 3 and 4 axes). Compared with prior research and other 

devices, the distribution of HAEs from the xPatch is more representative of those commonly 

reported from instrumented mouthguards with a skewed distribution that is characterized by a 
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high number of HAEs at low magnitude and relatively fewer HAEs at high magnitudes (Bartsch 

et al., 2020; Broglio et al., 2017; Caccese et al., 2019; Fetchko et al., 2022; Le Flao et al., 2022; 

Siegmund et al., 2021; Tierney et al., 2018). The xPatch measured only one “good” HAE greater 

than 40 g in both the BAC (43 g) and CMTC (50.4 g) environments. Comparatively, the lowest 

measured “good” HAE from the Linx was 45 g for the BAC and 28 g for the CMTC. Despite the 

significant differences in magnitude, both the xPatch and Linx data show correlations with the 

non-postural balance performance outcomes. However, as noted above, only the xPatch data 

were predictive of performance outcomes on the non-postural balance task. 

As noted above, the three efforts had a limited number of clinically diagnosed 

concussions (fewer than ten overall), limiting the correlation of exposure to injury outcomes. 

While the concussion cases are included as case studies, surrogate measures for clinically 

diagnosed concussions were necessary. Within the ESiT Core study, all subjects were 

administered a neurophysiological performance assessment at multiple time points, and these 

data were correlated with HAEs measured by two different wearable devices. For subjects in the 

BAC, adjusted performance on a non-postural balance task was correlated with both the number 

of impacts and the rotational velocity measured by the xPatch device. Comparatively, adjusted 

performance was correlated with peak linear acceleration, peak rotational velocity, and peak 

rotational acceleration measured by the Linx device. While peak severity and number of 

measured HAEs from the xPatch and Linx devices were correlated with reduced performance on 

the non-postural balance task, only HAE data from the xPatch device was found to be predictive 

of changes in performance. Similar results were found in preliminary analyses of data collected 

in the CMTC environment. While correlations were identified, the number of subjects and 

available “good” data from the CMTC limited the ability to calculate a dose-response 

relationship to provide a threshold for PCEs. 

Within the Prevent Biometrics study, a secondary review of video was used to identify 

exposures associated with observed signs of a potential concussion using sideline spotter 

guidelines for multiple sports leagues (Davis et al., 2019). Kinematic metrics measured by the 

Prevent Biometrics IMM show a potential threshold for PCEs above approximately 40 g and 6.4 

rad/s. It should be noted that several exposures (n = 106 HAEs) above this threshold were 

measured without observed indicators of concussion, and it is unknown whether any of the 

exposures below this threshold may have resulted in non-visible indicators of concussion (e.g., 

memory or cognitive deficits). 

Estimates for human tolerances to concussion based on automotive safety work from 

Stapp et al. (1961) and Patrick et al. (1965) range from 40 g to 80 g. Similar work at the time 

from Gurdjian et al. (1964) investigating severe head injury tolerances and skull fracture 

proposed 100 g to 200 g as life threatening exposures. The work by Gurdjian et al. (1964) was 

ultimately used to develop the Wayne State Tolerance Curve that proposed that a 90 g impact 

could produce a concussion. From military applications, Slobodnik (1980) proposed a threshold 

of 150 g as a loss of consciousness threshold, though loss of consciousness is now considered to 

be at the higher end of the mild TBI spectrum. More recently, several studies sponsored by the 

National Football League estimated concussions to occur in the ranges of 50 g and 140 g PLA 

(Newman & Shewchenko, 2000; Pellman, 2003; Pellman et al., 2003; Viano et al., 2007). Using 

data collected with the HITS, Rowson and Duma (2013) proposed an injury risk curve for 

concussion that combines peak resultant linear and rotational acceleration values (Rowson & 
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Duma, 2013). Depending on the associated rotational acceleration, the study showed a 50% risk 

of injury (i.e., concussion) as low as 50 g (with 10,000 rad/s2 rotational acceleration) and up to 

200 g (with 2000 rad/s2 rotational acceleration). A recently completed secondary analysis of 

HITS data indicates a median PLA of 66.7 g with an interquartile range (IQR) of 42.8 g for 

concussed (N = 51) individuals (Mihalik et al., 2020). The wide IQR highlights one of the many 

challenges with a single metric concussion threshold. Further, a computational modeling study 

from Zhang et al. (2004) proposed thresholds of 66 g, 82 g, and 106 g for 25%, 50%, and 80% 

probability of injury. Finally, a recent paper discussing concussion limits from reconstructed 

equestrian falls proposed concussion limits at approximately 60 g (Clark et al., 2020). 

While the range for risk based on this literature summary is large, approximately 40 g to 

100 g for mTBI (concussion) and approximately 100 g to 200 g for moderate/severe TBI, the low 

end of the range aligns with the low end of measured HAEs from the Prevent Biometrics study 

with observed indicators of concussion. Further, the low end of the range is above the highest 

measured HAEs from the xPatch BAC data within the ESiT Core study (with no concussions or 

observed indicators). While this range does not address the potential for concussion at lower-

severity impacts (such as those discussed in both the ESiT Core CMTC and the ESIT USMA 

case studies), especially when there are no obvious clinical indicators present, it does provide a 

starting point to identify PCEs that may be of concern based on head impact severity. However, 

caution must be taken when interpreting this range as it does not account for the case study 

results identified in the ESiT Core and ESIT USMA studies above or literature showing the 

prevalence of concussions occurring at low severities (O’Connor et al., 2017; Siegmund et al., 

2021). 

Several studies have proposed an alternative mechanism for concussion that accounts for 

repetitive head impact exposures as well as single traumatic exposures (Broglio et al., 2017; 

Caccese et al., 2019; Rowson et al., 2018; Stemper et al., 2019; Tierney, 2022). In particular, a 

recent summary from Tierney (2022) proposed three potential mechanisms for traumatic brain 

injury. The first mechanism relates the risk of injury to kinematic severity and assumes a single 

traumatic event causes injury by exceeding a mechanical load threshold. The second mechanism 

identifies a “cumulative head impact index” associating lifetime exposure based on estimated 

numbers of impacts with the risk of neurodegenerative disease. The final mechanism proposes 

that the accumulated effects of repetitive exposure to HAEs on the day of injury or the season 

leading up to injury may lower the threshold for injury. Notably, the final mechanism proposes 

that injury criteria should account for both the number and magnitude of HAEs and the time 

between exposures versus a single exposure (Tierney, 2022). The thresholds discussed above and 

from the leveraged study by Prevent Biometrics are based on the theory of the first mechanism 

for injury. Comparatively, proposed injury metrics for a risk weighted exposure (Stemper et al., 

2019) or head impact density (Broglio et al., 2017) work on the theory of the third mechanism 

for injury. The injury metrics based on the third mechanism may provide a possible explanation 

for the apparently “low-severity” concussions discussed in the case studies above; however, 

more work is needed to investigate this relationship. 
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Limitations 

Data collected under the ESiT Core study used early-generation wearable devices that 

were susceptible to common issues with wearable devices for head impact (for a more thorough 

discussion, please refer to Rooks et al., 2023). Briefly, the two head-borne devices were 

susceptible to significant time drift, and the false-positive rejection algorithms did not perform 

well. While the xPatch device provided all data for further review, enabling the research team to 

review each event and leverage alternative methods for event classification, the Linx device 

excluded suspected false-positives and did not store them for further review. Despite the care 

taken to synchronize video and device data, substantial hurdles with maintaining an accurate 

clock between the video and device data were encountered. The time drift from the devices 

ultimately resulted in an inability to fully video-verify device data from the CMTC dataset, 

limiting the overall confidence in the device data. While video review was not possible, the 

xPatch data were reclassified as “good” versus “bad” using an in-house developed machine 

learning classification algorithm (Rooks et al., 2019). A comparable machine learning 

classification algorithm for the Linx was not available for use. In addition, multiple reviews of 

signal characteristics were completed, resulting in a conservative dataset for further analyses 

correlating exposure with neurophysiological performance. 

Similar challenges were encountered with early versions of the IMM used with the rugby 

test cohort under the ESIT USMA study. Multiple issues with device compliance, device 

performance, false-positive rejection algorithm performance, and time drift were encountered. 

The issues were prevalent during the 2018 and 2019 seasons using an early version of the boil-

and-bite mouthguard and circuitry that were too large for most subjects to wear comfortably and 

were susceptible to circuit failures during use. The circuit failures caused issues during the data 

synchronization for the devices resulting in substantial loss of data. During the fall 2019 men’s 

15-man roster rugby season, a new version of the device was employed with significantly better 

fit, compliance (updated form factor to a hybrid boil-and-bite system that was more 

comfortable), and performance (updated sensors and circuitry were more durable). In addition to 

the improved comfort and performance, the new generation of devices incorporated a proximity 

sensor to determine when the device was worn on the teeth. The inclusion of the proximity 

sensor with other (proprietary) false-positive rejection algorithm steps resulted in significant 

improvement in the device performance and the ability to reject false-positive events (Fetchko, 

2022). 

Finally, the present study included a limited number of concussions and relied on 

alternative methods of identifying PCEs. The Core study used measured neurophysiological 

performance deficits for all subjects as a potential measure of degraded performance and found 

relationships between increased severity of exposure (in particular rotational velocity) as well as 

an increased number of exposures and reduced performance. The correlations align with the first 

and third proposed mechanisms of concussion identified by Tierney (2022). Further, the ESiT 

Core study also found that the HAEs measured by the xPatch were predictive of performance 

deficits, but not the Linx device. The leveraged study from Prevent Biometrics included 

observable indicators of potential concussion commonly used by sideline spotters as the markers 

for a PCE. While no additional information regarding clinical diagnoses was available, the use of 

sideline spotters is common practice for identifying individuals at risk of concussion (Davis et 

al., 2019). While clinical diagnoses are unavailable, the observable indicators of concussion (i.e., 
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PCEs) provide a comparable alternative to the main aim of the ESiT program, which is looking 

to use wearable devices to indicate PCEs. 

Conclusion 

The present report highlights the continued challenges with using wearable devices to 

capture HAEs associated with mTBI (concussion) to develop a concussion dose-response 

threshold (Rooks et al., 2023). Despite data being collected from approximately 700 volunteers 

across all three efforts and approximately 12,000 HAEs above 10 g being recorded, only three 

subjects had suspected concussions with data available for analysis. Further, for the three 

subjects with suspected concussions, the highest magnitude HAE recorded on the suspected day 

of injury was from the Linx device measuring 73 g (22 rad/s). However, as seen in the ESiT Core 

BAC and CMTC datasets, the Linx device reports substantially higher magnitudes of exposure 

compared with the xPatch device. The highest magnitude xPatch HAE from the day of suspected 

concussion was 26 g (18 rad/s). An additional 19 subjects had observed indicators of possible 

concussion (i.e., PCE), but no additional clinical diagnoses or evaluations. However, the dataset 

with 19 PCEs did not capture information about all subjects and may have missed concussions at 

lower magnitudes comparable to the case studies reported. 

The three suspected concussions with low magnitude exposures on the day of injury may 

be representative of the “third mechanism of injury” (i.e., repetitive exposure resulting in an 

accumulation of damage) proposed by Tierney (2022); however, the available sample size is 

insufficient to investigate possible metrics and dose-response relationships for injury. Additional 

research investigating the third proposed mechanism of injury from Tierney (2022) is 

recommended and may enable further analyses of these data (Broglio et al., 2017; Caccese et al., 

2019; Rowson et al., 2018; Stemper et al., 2019; Tierney, 2022). Similarly, the 19 PCEs (based 

on observed indicators of concussion) may be representative of the “first mechanism of injury” 
(i.e., single traumatic exposure-caused injury) proposed by Tierney (2022). Additional research 

investigating both the first and third proposed mechanisms of injury is needed to develop a 

complete model and dose-response relationship for concussion. 

As noted in the Preface, the state of the technology has significantly accelerated in recent 

years, and the comparatively older technologies (i.e., the xPatch and Linx devices) used in the 

ESiT Core study had several challenges during their implementation and use (Rooks et al., 

2023). While more advanced, the IMM had similar challenges during early implementations 

(though it improved substantially over the course of the study). As the technology continues to 

improve, research should leverage the current state of the science to improve the predictive 

capacity of the devices and identify a single traumatic event threshold (i.e., Tierney’s first 

mechanism of injury) as well as the role of repetitive exposures and recent exposure history on 

changing individual thresholds (i.e., Tierney’s third mechanism of injury). 
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Appendix A. Training Environments 

The BAC consists of three weeks of exercises of increasing levels of difficulty, 

progressing from jumping off of a two-foot-tall wall during the first week (ground week), 

jumping from a platform, swinging in a mock suspension system before landing (tower week), 

and finally jumping from an airplane during the final week (jump week). Several of the exercises 

conducted may result in HAEs. The first week of exercises are the first exposure to parachutist 

landing falls and may result in a high number of mild head impacts to the ground while students 

learn the new technique. The second week of exercises builds on experience from the first week 

and introduces new skills. Drills during the second week of training include the potential for a 

lower number of, but harder, impacts with the ground. As difficulty increases, so should the 

trainees’ ability to land properly, until the final week when the trainees jump from a plane in 

order to graduate. 

The CMTC consists of four weeks of training with increasing levels of difficulty. The 

CMTC is designed for personnel experienced in combatives principles to become trainers for the 

basic combatives course (BCC) and tactical combatives course (TCC). The first week is a review 

of principles for the BCC and the second and third weeks include a review of principles for TCC. 

The final week combines the skills learned into a tactical application. Throughout the course, 

Service Members conduct both sparring sessions, including kicks and strikes, and grappling 

sessions. 
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Appendix B. Wearable Sensor Details 

The X2 Biosystems xPatch is a small device that is mounted to the skin over the mastoid 

process using a dual-sided adhesive patch (Rooks et al., 2015). The xPatch device records all 

HAEs above a threshold of 10 g (acceleration) in any axis and stores full time-trace data for each 

event. The software application provided with the device attempts to classify HAEs as true 

events (i.e., measured HAEs resulting from head motion) or false positives (i.e., measured HAEs 

resulting from device motion in the absence of head motion). All HAEs are saved for further 

review and reclassification. The xPatch is easily peeled off following a game, practice, or data 

collection series. Because the xPatch uses skin adhesives and nickel alloy contacts, it should not 

be used with individuals who have skin sensitivity to common skin adhesives (e.g., BAND-AID® 

adhesive), nickel allergies, or any skin disorders (e.g., psoriasis or latex allergies) (Rooks et al., 

2015). Service Members who self-reported skin allergies were excluded from participation. 

The BlackBox® Biometrics Linx system is embedded in the headband portion of a 

skullcap or a headband worn on the head. The Linx records all HAEs above a proprietary 

severity of approximately 40 g (for field mode) or above approximately 10 g (for test mode) in 

any axis. During the data collection for the ESiT Core study, the “test mode” was unavailable for 
use. All data in the present study were collected under “field mode,” with the approximately 40 g 

trigger severity. The Linx device stores summary data for lower severity impacts and full time-

trace data for higher severity impacts. The software application provided with the device 

classifies HAEs as true events or false positive events using a proprietary algorithm and only the 

true HAEs are saved for further analysis when configured in field mode (Rooks et al., 2015). 

The Prevent Biometrics IMM is a mouthguard-based wearable device used to measure 

kinematics at the head CG resulting from exposure. The IMM is worn on the upper dentition and 

is custom fit to each volunteer. The IMM device records all HAEs above a 5 g threshold in any 

axis and stores full time-trace data for each event. The IMM software uses a proprietary 

algorithm based on signal characteristics combined with proximity devices embedded in the 

device that detect when worn on the teeth to classify HAEs as true events or false positives. All 

HAEs are saved for further review and reclassification. 

Sensor specifications for all three devices are provided in Table B1. 
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 Sensor Current Uses   Application Specifications   Image 

athletics,  adhesive –  uses a  linear acceleration in X, Y, and Z  

xPatch  

(X2 

 BioSystems) 

including 

football, soccer, 

boxing, and 

lacrosse, among 

 others  

 hypo-allergenic 

adhesive similar to 

BAND-AID®  

adhesive. Affixed 

  directly to the head at 

the mastoid process  

 axes (± 200 g)  

   angular rate about X, Y, and Z axes  

(± 2000 deg/s)  

 battery life: ~ 5-6 hours  

trigger: 10 g in any single axis  

 sample rate: 1000 Hz  

 Linx 

(BlackBox 

 Biometrics – 
 B3) 

athletics, 

including 

football, soccer, 

boxing, and 

lacrosse, among 

 others 

   skull cap or headband 

– worn under the 

combat helmet 

 linear acceleration in X, Y, and Z  

axes (± 200 g)  

   angular rate about X, Y, and Z axes  

(± 2000 deg/s)  

battery life: ~6-7 Hours  

trigger: ~40 g (with proprietary 

rotational content)  

   sample rate: 1600 Hz 

 (accelerometer) and 2000 Hz 

(gyroscope)  

IMM  

(Prevent 

 Biometrics) 

athletics, 

including 

football, soccer, 

boxing, and 

lacrosse, among 

 others 

 mouthguard  linear acceleration in X, Y, and Z  

axes (± 200 g)  

   angular rate about X, Y, and Z axes 

(± 2000 deg/s)  

battery life: ~8-9 hours  

trigger: 5 g in any single axis  

 sample rate: 3200 Hz  

Table B1.  Environmental Sensor Application Description  
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All of USAARL’s science and technical informational documents are 
available for download from the Defense Technical Information Center. 

https://discover.dtic.mil/results/?q=USAARL 

https://discover.dtic.mil/results/?q=USAARL
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