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Background 

The following report was provided to Dr. Adam Bartsch in support of the Human Head 

Impact Dose Concussion Risk Functions and Sensor-Based Military-Specific Environmental 

Monitoring System Project (BA150149, W81XWH-17-1-0019). Dr. Bartsch was the project 

Principal Investigator, and the U.S. Army Aeromedical Research Laboratory (USAARL) was a 

collaborator performing laboratory evaluations of the instrumented mouthguard from Prevent 

Biometrics using multiple anthropometric test devices (ATDs) (Bartsch, 2022). Assessments 

were completed in accordance with approved USAARL Test Plan 2020-016. 

The information enclosed consists of test methods, instrumentation details, and results 

comparing the measured kinematics using a boil-and-bite instrumented mouthguard with 

reference kinematics from two ATD headforms under multiple exposure types and severities. 

Introduction 

Mild traumatic brain injury (mTBI) is a concern in military environments (Defense and 

Veterans Brain Injury Center [DVBIC], 2020). Immediate symptoms associated with mTBI 

(concussion) include loss of consciousness for up to 30 minutes, alteration of consciousness or 

mental state for up to 24 hours, and post-traumatic amnesia for up to 24 hours (O'Neil et al., 

2013). Repeated mTBI is associated with longer recovery times and reduced ability to process 

information (Gronwall & Wrightson, 1975). Multiple mTBIs could potentially increase the risk 

of neurodegenerative disorders (McAllister & McCrea, 2017); while no link has definitively 

been established between Alzheimer’s disease and repetitive mTBI, earlier onset of Alzheimer’s 

was observed in a study of retired football players versus the general population (Guskiewicz et 

al., 2005). 

Timely and accurate information is important for clinical diagnosis and return-to-duty 

following a concussion (Asken et al., 2016). Diagnoses often depend on self-reporting, which 

may result in missed diagnoses since individuals who suffer a concussion may not have 

awareness of symptoms (McCrea et al., 2004). Environmental sensors (ES) attached to a 

Soldier’s helmet or head are a tool that may provide the ability to identify possible concussions 

in real time without relying on self-reporting. Environmental sensors record head accelerative 

exposures and give estimates of kinematics at the head center of gravity (CG). The Impact 

Monitor Mouthguard (IMM) developed by Prevent Biometrics (Edina, MN) is a mouthguard-

based ES that could be used to measure kinematics at the head CG resulting from exposure. The 

IMM is capable of recording head kinematics (i.e., linear acceleration, angular velocity) 

associated with potentially concussive events (Bartsch et al., 2014; Bartsch et al., 2020; Liu et 

al., 2020; Jones et al., 2022; Kieffer et al., 2020). 

For ESs to be useful, they need to give reasonable estimates of accelerative exposures at 

the head CG. Laboratory testing using ATDs is one way that mouthguard sensors have been 

validated (Bartsch et al., 2014; Camarillo et al., 2013; Kieffer et al., 2020; Kuo et al., 2016; 

Siegmund et al., 2016). Testing has generally included direct impacts to helmeted and un-

helmeted ATDs of a 50th percentile male at increasing levels of severity (Bartsch et al., 2014; 

Camarillo et al., 2013; Kieffer et al., 2020; Kuo et al., 2016; Siegmund et al., 2016). Agreement 

levels between mouthguards and laboratory-grade sensors have ranged from excellent (Bartsch et 
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al., 2014; Camarillo et al., 2013) to poor (Siegmund et al., 2016). Kuo et al. (2016) proved in a 

laboratory setting that one of the main factors in determining levels of agreement has been 

whether the ATD used in testing contains a clenched mandible, unconstrained mandible, or no 

mandible. These three mandible conditions were tested and used to reproduce data from previous 

studies (Bartsch et al., 2014; Camarillo et al., 2013; Siegmund et al., 2016). One factor not tested 

by these studies is the accuracy of the mouthguard sensors under indirect or inertial loading. 

The objective of this study was to compare the kinematic response predicted by the 

instrumented mouthguard with that reported by a laboratory reference measured at the center of 

gravity of an ATD headform. Additionally, this study evaluated the influence of the choice of 

ATD headform (with varying mandible designs) and indirect (e.g., inertial) versus direct 

(e.g., impact) loadings. 

Methods 

The study was conducted at USAARL to determine the agreement between the IMM and 

laboratory-grade sensors at the head CG of multiple ATD headforms. Testing was conducted 

under direct and inertial loading. The IMM was tested during frontal impacts using a pendulum 

and minisled setup to determine how well it reproduces kinematics measured at the head CG via 

laboratory-grade sensors of a modified National Operating Committee on Standards for Athletic 

Equipment (NOCSAE) headform and a Mandible Load Sensing Headform (MLSH). The 

modified NOCSAE headform incorporated a screw through the bottom of the jaw to replicate 

conditions of a “clenched mandible,” and the MLSH was designed with a mandible that freely 

rotates and uses springs to simulate clamping forces in the jaw. Boxing headgear was also added 

to the ATD headforms for direct impacts to determine whether the headgear affects the accuracy 

of the IMM. 

Minisled Test Device 

The USAARL pendulum and minisled setup consists of a horizontal rail system (3.66 

meters) and a low-friction sled. The sled is placed at one end of the track, and a 22.7 kilogram 

(kg) rigid direct impact pendulum (Figure 1) strikes the headform directly, simulating a boxer’s 
punch. The system can also be set up for indirect impacts via a 45.4 kg indirect impact 

pendulum, which simulates an inertial load to the sled representing the C7-T1 junction. Palmyra 

brushes bring the sled to a stop approximately 1.3 meters from the impact site. The pendulum 

release height can be adjusted to impact the system with varying amounts of intensity and 

energy. 

This space is intentionally blank. 
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  (b) (a) 

 USAARL minisled system  showing the (a) indirect  or inertial loading setup and the (b)  

direct  loading setup.  

 

 MLSH. (a) Exploded view, (b) assembled and attached to  an  H-III neck, and (c) with 

synthetic  H-III skin.  

 

Anthropometric Test Device Headforms  

The MLSH (Figure 2) is a 50th  percentile Hybrid-III (H-III) ATD altered to have an 

articulating jaw that allows testing of a mouthguard sensor. The jaw contains a steel mandible  

with upper and lower simulated dentition and spring-loaded temporomandibular joints (TMJs). 

The TMJ produces a clamp/bite force of approximately 22.3  Newtons  (N)  (Siegmund et al., 

2014). The headform connects to an  H-III neck.   

The NOCSAE headform (Figure 3) was designed for use in NOCSAE standards testing. 

The NOCSAE headform used in this study was altered to allow fitting of the  IMM; an adapter  

was added to allow connection to an H-III neck. A slot in the face of the  modified NOCSAE  

headform allows insertion of the IMM into the headform; a screw underneath the jaw allows 

simulation of a biting force by holding in place  an aluminum plate underneath the  IMM.  

This space is intentionally blank.  
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 Modified NOCSAE headform  with slot for the IMM and metal plate to hold the sensor 

onto the upper dentition.  

 

   

 

     

  

    

   

 

     

   

 

  

   

  

 

  

    

 

   

    

  

 

 

Instrumentation 

The MLSH was instrumented with a nine-accelerometer array (Endevco 7264B-2000) 

located at the head CG to transform linear acceleration into angular rate and angular acceleration 

during post-processing (Martin et al., 1998). The MLSH also included a six-degree-of-freedom 

(6-DOF) load cell (triaxial forces and triaxial moments) at the lower neck (Humanetics 

7992JS1TF), 3-DOF load cells at the left and right TMJs (PCB Piezotronics 260A01), and a 3-

DOF load cell at the upper dentition (PCB Piezotronics 260A01). 

The NOCSAE headform was instrumented with three linear accelerometers (Endevco 

7264C-2KTZ) and three angular rate sensors (DTS ARS PRO-8K) at the head CG. The 

NOCSAE headform had the same lower neck load cell as the MLSH but did not include TMJs or 

upper dentition load cells. 

All tests included a uniaxial linear accelerometer on the sled carriage (Endevco 7264C-

500). For indirect impacts, a triaxial force load cell was installed on the pendulum impactor 

(Humanetics 8728TF). For direct impacts, a uniaxial linear accelerometer (7264C-500TZ) was 

installed on the pendulum to measure linear acceleration. The linear accelerometer on the sled 

was used to determine the repeatability of the tests. 

All laboratory-grade data was collected using the Synergy data acquisition system 

(High-Techniques, Madison, WI, USA) and sampled at 20,000 samples per second (sps). 

Additionally, high-speed video was captured for all tests at 1500 frames per second (fps) using a 

Vision Research Phantom Miro camera (Wayne, NJ, USA). Markers were placed on the 

headform, neck, and sled to track movement. 
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Test Conditions 

Tests were conducted under both inertial (indirect) loading as well as direct loading using 

both the modified NOCSAE headform and MLSH. All tests were conducted with exposures in 

the -x direction (the direction of motion is opposite the direction the ATD was facing). For 

inertial loading, tests were conducted at four impact energies of approximately 130 Joules (J), 

198 J, 266 J, and 334 J. For each energy, three different IMM sensors were tested. Impacts for a 

given energy and headform were repeated three times (Table A1). 

For the direct impacts, tests were conducted at two different impact energies simulating 

the punch of a flyweight and super heavyweight boxer (Table A2; Tables B1 and B2) (Walilko et 

al., 2005). For each energy, three different IMM sensors were tested. Impacts for a given energy 

and headform were repeated three times with and without boxing headgear (Appendix A). 

The Prevent Biometrics Impact Monitor Mouthguard (IMM) 

The IMM is a hybrid boil-and-bite mouthguard with embedded flexible circuitry; a 

tri-axial gyroscope and three linear accelerometers are attached to the circuitry inside the 

mouthguard. The linear accelerometers and tri-axial gyroscope allow kinematics (i.e., head 

angular velocity/angular acceleration and linear acceleration) to be recorded at the mouth 

(Bartsch et al., 2014). Linear acceleration at the mouth is transformed to the head CG using rigid 

body kinematics via the following equation: 

�⃗�𝐻𝑒𝑎𝑑_𝐶𝐺 = �⃗�𝐼𝑀𝑀 + �⃗�𝐼𝑀𝑀 × 𝑟𝐻𝑒𝑎𝑑_𝐶𝐺/𝐼𝑀𝑀 + �⃗⃗⃗�𝐼𝑀𝑀 × (�⃗⃗⃗�𝐼𝑀𝑀 × 𝑟𝐻𝑒𝑎𝑑_𝐶𝐺/𝐼𝑀𝑀) (Equation 1) 

Where �⃗�𝐻𝑒𝑎𝑑_𝐶𝐺 and �⃗�𝐼𝑀𝑀 are linear accelerations at the head CG and mouthguard, respectively, 

and 𝑟𝐻𝑒𝑎𝑑_𝐶𝐺/𝐼𝑀𝑀 is the head CG position relative to the mouthguard. Finally, �⃗⃗⃗�𝐼𝑀𝑀 and �⃗�𝐼𝑀𝑀 

are the measured angular velocity and angular acceleration, respectively. 

Before conducting the tests, the IMM was boiled for 50 seconds. The IMM was then held 

onto a jig for the MLSH tests and onto the headform dentition for the NOCSAE tests. The IMM 

was fit to each ATD for 30 seconds. After fitting, the IMM was placed onto each headform prior 

to testing. Data recorded by the headform was wirelessly transmitted to a computer for post-

processing during testing. To confirm adequate coupling to the dentition, each IMM was placed 

on the dentition prior to testing, and it was confirmed that it stayed in place without additional 

clamping. 

The IMM was set in “lab mode” for all tests. The trigger threshold was 5 G along any 

axis, and the internal filtering algorithms and requirements were disabled for the study to ensure 

data collection on the headforms. Upon passing the trigger threshold, the mouthguard provided 

linear acceleration, angular acceleration, and angular velocity time traces for each axis, as well as 

resultants at the head CG. Sampling rate for all data was 3200 hertz (Hz). Accelerometer and 

gyroscope ranges were +/- 200 G and +/- 2000 degrees per second (deg/s), respectively. The time 

of recorded data was 50 milliseconds (ms) with a 10 ms pre-trigger duration. 
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Table 1.  The Prevent Biometrics Impact Monitor Mouthguard (IMM)  

Mount Primary measurements, battery 
Sensor     

type/location   life, and  trigger  threshold   

Processed linear acceleration, 

angular velocity, and angular  

acceleration along/about X, Y, and 

Z  axes at head  CG  in the  J211 

coordinate system  
  

 
 

Summary linear  acceleration, 
 

angular acceleration,  and angular  
 

velocity at head CG  

 

Sampling rate: 3200 Hz (all data)  

 

Battery life: ~10 hours (depends on 
Prevent  

Head/mouth activity level and wear of the 
Biometrics 

(mouthguard)  device)  
IMM  

 

Trigger: 5 G in any single axis  
  

 
Linear accelerometer range: +/- 

 
200 G along  each axis  

 
 

Source: 
Gyroscope  range: +/- 2000 

https://preventbiometrics.com/the-
deg/second about each axis  

system/  
 

Linear/angular  acceleration  and 

angular velocity  duration and pre-

trigger duration:  

50 ms, 10 ms  

Data Analysis 

All linear accelerometer and angular acceleration data at the head CG was filtered at a 

200 Hz cutoff frequency during post-processing. Sled accelerometer, pendulum force, and 

pendulum accelerometer data were filtered at channel frequency class 60 (CFC 60) as defined in 

Society of Automotive Engineers (SAE) J211 standards (SAE, 1995). The coordinate system at 

the head CG followed SAE J211 with +x out the front of the face, +y out the right side of the 

head, and +z out the bottom of the head as defined by the right-hand rule (Figure 4). The internal 

coordinate system for the IMM was the same as the laboratory reference. 
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 Head CG coordinate system of MLSH without synthetic skin. The coordinate system 

of the NOCSAE  headform is the same as the MLSH.  

Percent error between the laboratory (e.g., reference) instrumentation and the  IMM was 

calculated to compare measurements from the  IMM and kinematics at the  head CG. Percent error  

is given by the following:  

|𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐
  =  𝐼𝑀𝑀−  𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒|

Percent Error ∗ 100                 (Equation 2)  
𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Where  𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝐼𝑀𝑀  and 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  are the kinematic quantity being 

compared between the  IMM and laboratory grade sensors, respectively. Kinematics compared 

between the IMM and laboratory reference instrumentation included peak resultant linear 

acceleration (PRLA) at the head CG and peak absolute value of pitch rate (PPR). Summary 

statistics of percent error between the IMM and reference were  calculated for all tests. In 

addition, summary statistics were  calculated for each of the test conditions (e.g., direct versus 

indirect exposure  condition). Lines of best fit between the IMM and reference peak kinematic  

data were constructed across all tests  for each combination of loading condition and ATD 

headform to determine how well  IMM kinematics linearly correlated with ATD kinematics.   

Results  

For the resultant linear acceleration,  indirect impact tests with the NOCSAE headform 

(7.46 ± 3.12%) had smaller mean percent error (MPE) than tests with the MLSH (21.2 ± 22.9%)  

(Figure 5). For the angular rate, indirect impact  tests with the NOCSAE headform                  

(3.80 ± 3.35%) also had smaller MPE than tests with the MLSH (9.72 ± 8.51%)  (Figure  5).   

For the resultant acceleration, direct impact tests with the NOCSAE headform            

(10.6  ± 9.03%) had smaller MPE than tests with the MLSH (27.6 ± 22.0%). For the angular rate, 

direct impact tests with the NOCSAE (1.22 ± 1.2 9%) also had smaller MPE than tests with the 

MLSH (14.1 ±  10.4%) (Figure 6).   
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 MPE between ATD  and instrumented mouthguard peak kinematics for (a) the MLSH 

and (b) the NOCSAE  headform during indirect  impacts.  For both ATDs, the MPE for the angular 

rate was consistently lower than the resultant linear acceleration.  “Abs Pitch Rate” is the absolute 

value of the pitch rate.  

 

 

The IMM had a nearly linear response compared with the NOCSAE headform for PRLA 

(slope: 1.04, R2: 0.96) and PPR (slope: 0.96, R2: 0.98) values across all indirect impacts (see 

corresponding lines of best fit in Figure 7 and Figure 8). Additionally, the IMM had a nearly 

linear response compared with the MLSH for PPR (slope: 1.1, R2: 0.90) values across all indirect 

impacts (see corresponding line of best fit in Figure 8). PRLA values from the IMM did not have 

a linear response compared with the MLSH PRLA values (slope: 1.23, R2: 0.68; Figure 7). 
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  Mean percent error between ATD  and instrumented mouthguard peak kinematics for 

(a) the MLSH and (b) the NOCSAE  headform during direct  impacts.  For both ATDs, the MPE 

for the angular rate was consistently lower than the resultant linear acceleration.  “Abs Pitch 

Rate” is the absolute value of the pitch rate.  

 Scatter plot of ATD  and instrumented mouthguard peak linear acceleration during 

indirect impacts.  The NOCSAE headform had good agreement throughout the test range  while 

the MLSH headform had large errors at the higher test energies.  
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 Scatter plot of ATD  and instrumented mouthguard  peak angular velocity  during 

indirect impacts.  For PPR, the instrumented mouthguard response agreed well with both ATDs.  
*Angular velocity is reported in radians per second (rad/s).   

The  IMM showed a nearly linear response compared with the NOCSAE  headform for  

PRLA  (slope: 0.99,  R2: 0.82) and PPR  (slope: 1.01, R2: 0.99) values across all  direct  impacts  (see  

corresponding lines of best fit in Figure  9 and Figure 10). The  IMM had a  nearly linear response 

compared with the MLSH PPR  (slope: 1.14, R2: 0.83)  values across all  direct  impacts (see  

corresponding line of best fit in Figure  10). While  PRLA  response from the  IMM was nearly 

linear compared with the MLSH PRLA values (slope: 1.33, R2: 0.88;  Figure  9), there was a  

substantial increase in the error of  IMM responses at higher energies compared to the MLSH 

PRLA.   
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 Scatter plot of ATD  and instrumented mouthguard peak linear acceleration during 

direct impacts.  The NOCSAE headform had good agreement throughout the test range  while the  

MLSH headform had  large errors at the higher test energies.  

 Scatter plot of ATD and instrumented mouthguard peak angular velocity during direct 

impacts.  For PPR, the instrumented mouthguard response agreed well with both ATDs; however, 

MLSH tests had a slight overestimation.  
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Discussion 

In general, the agreement between IMM and ATD kinematic data was better for the 

NOCSAE headform than for the MLSH (Figures 5-10). This finding is in agreement with 

previous literature (Camarillo et al., 2013; Siegmund et al., 2014; Kuo et al., 2016; Liu et al., 

2020; Kieffer et al., 2020; Jones et al., 2022). The NOCSAE headform contains what is known 

as a “clenched” mandible in previous literature, while the MLSH mandible is not fully 

constrained and can rotate freely as the headform rotates. Kuo et al. (2016) evaluated a 

mouthguard formed using ATD dentition molds under direct impacts for three mandible 

conditions, including no mandible, clenched mandible, and unconstrained mandible. Linear 

regression analyses between ATD and mouthguard peak resultant linear acceleration and peak 

resultant angular velocity across all impacts resulted in slopes of 0.99 and 1.01, respectively. For 

the clenched mandible condition, this finding is similar to what has been shown in the current 

study (Figures 7-10). Similar to the MLSH results for the present study, Kuo et al. (2016) stated 

that for the unconstrained mandible condition, mouthguard peak resultant angular velocity and 

peak resultant linear acceleration generally over-predicted corresponding reference 

measurements. Further, Camarillo et al. (2013) and Kieffer et al. (2020) discuss similar findings 

to the present study using a clenched mandible under direct impacts (excellent agreement 

between sensor and ATD kinematic measurements). Finally, Siegmund et al. (2014) reported 

absolute errors of 12 ± 10% across multiple impact sites and severities when testing a 

mouthguard under direct impacts using the MLSH. 

MPE between NOCSAE headform and IMM PRLA and PPR had smaller percentages 

and standard deviations than that of the MLSH (Figures 5 and 6). The NOCSAE headform also 

had better linear correlation with IMM PRLA than that of the MLSH for both indirect and direct 

impacts (Figures 7-10). The linearity between the IMM and ATD highlighted the effects of the 

unconstrained mandible in the MLSH through increased slope compared to the expected value as 

well as the lower R2 values. 

The R2 values in the present study were lower than in prior work. In comparison with 

prior work evaluating instrumented mouthguards, the present study did not use custom-molded 

mouthguards but instead used boil-and-bite versions that were manually fit to the ATD. The 

lower R2 values were determined to be due to mouthguard fit. When reviewing individual IMM 

responses compared with the ATDs, substantial differences in slope and R2 were observed for 

some of the IMMs, indicating differences in fit (Appendix C). As with the data considered across 

sensor groups, the IMM and NOCSAE headform kinematics were more similar than the MLSH 

and IMM kinematics. When reviewing data broken down by sensor group, it was determined that 

one of the sensor groups was uniquely non-correlated with the corresponding NOCSAE 

headform PRLA values during direct impacts (Appendix C). This finding likely contributed to 

the lower R2 values when considered across sensor groups. Issues fitting the mouthguard could 

cause sensors to be oriented incorrectly or cause the mouthguard to slip on the teeth. Previous 

work has shown that the orientation of a sensor affects agreement with measurements at the head 

CG (Brown et al., 2021). These findings highlight the potential variability in mouthguard 

response due to poor fit. Further, the findings stress the importance of ensuring a good fit both 

during laboratory testing and during field studies. 
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There were limitations in this study. First, only one impact direction was considered. 

Agreement between ATD and mouthguard data has been shown to be location-dependent, and 

our results could be different if considering other directions. One takeaway of the study, that a 

clenched ATD mandible gives better agreement with IMM kinematics than a freely rotating 

ATD mandible, has been shown in previous literature to be true across several impact locations 

(Siegmund et al., 2014; Kuo et al., 2016). It is anticipated that this study would show the same 

findings if more impact locations were tested. Second, this study used one size for both the 

MLSH and NOCSAE headforms. Headforms of different sizes may affect the ability of IMM 

internal algorithms to predict kinematics at the head CG accurately. 

Agreement between the IMM and ATD kinematics was found to be dependent on the 

headform used as well as the mouthguard fit. These results are not unexpected based on 

previously summarized literature and their agreement with the results of this study. A freely 

rotating mandible will strike the IMM, causing motion independent of the primary motion of the 

head. This will result in independent movement of the IMM accelerometers and tri-axial 

gyroscope, leading to inaccurate measurements. While the variability in response increased for 

the boil-and-bite IMM used in this study, the overall variability remained small. Compared with 

prior literature that used custom-molded mouthguards during laboratory evaluations, the 

variability in fit due to boil-and-bite procedures provides a more representative sample of the 

currently used devices in human subject research applications and of the potential variation in fit 

for human subjects. This suggests that boil-and-bite mouthguards could be used for research with 

minimal increases in potential errors estimating head acceleration exposures. 
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130 
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198 
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NOCSAE 

1 

130 

198 

266 
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3 

3 

3 

3 

2 

130 

198 

266 

334 

3 

3 

3 

3 

3 

130 

198 

266 

334 

3 

3 

3 

3 

Total number of tests: 72 

Headform Sensor number Impact energy level (J) Number of tests 

Table A1. Indirect Impact Matrix using IMM  

Appendix A.  Test Matrices for Indirect and Direct Impact Conditions  
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Headform Sensor number Head CG Headgear Number of tests 

energy level 

MLSH 

4 

Flyweight No 3 

Super 

heavyweight 

No 3 

Flyweight Yes 3 

Super 

heavyweight 

Yes 3 

5 

Flyweight No 3 

Super 

heavyweight 

No 3 

Flyweight Yes 3 

Super 

heavyweight 

Yes 3 

6 

Flyweight No 3 

Super 

heavyweight 

No 3 

Flyweight Yes 3 

Super 

heavyweight 

Yes 3 

NOCSAE 

4 

Flyweight No 3 

Super 

heavyweight 

No 3 

Flyweight Yes 3 

Super 

heavyweight 

Yes 3 

5 

Flyweight No 3 

Super 

heavyweight 

No 3 

Flyweight Yes 3 

Super 

heavyweight 

Yes 3 

6 

Flyweight No 3 

Super 

heavyweight 

No 3 

Flyweight Yes 3 

Super 

heavyweight 

Yes 3 

Total number of tests: 72 
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Table A2. Direct Impact Matrix using IMM  



       

    

    

    

    

    

    

    

    

    

    

    

    

    

MLSH (J) NOCSAE (J) Walilko (J) 
17.4 14.6 17 

18.4 13.5 14 

18.9 13.2 20 

17.3 13.4 9 

19.3 12.6 20 

18.6 12.3 13 

18.0 14.2 14 

17.9 14.5 -

18.4 15.8 -

Mean 18.3 13.8 15.3 

SD 0.66 1.09 3.99 

Maximum 19.3 15.8 20 

Minimum 17.3 12.3 9 

       

    

    

    

    

    

    

    

    

    

    

    

    

    

MLSH (J) NOCSAE (J) Walilko (J) 
28.2 21.5 20 

29.6 21.2 28 

29.2 20.6 32 

29.9 21.3 31 

29.4 19.8 32 

29.8 19.7 -

30.2 23.7 -

29.9 22.6 -

30.3 23.4 -

Mean 29.6 21.5 28.6 

SD 0.64 1.46 5.08 

Maximum 30.3 23.7 32 

Minimum 28.2 19.7 20 

 

  

  

   

  

   

  

  

 

  

   

 

Appendix B.  Direct Impact Test Energy Conditions  

Table B1. Super Heavyweight Energies Transferred to Headforms 

Note. Estimated energies transferred to the head from the pendulum under direct impacts 

calculated for the MLSH and NOCSAE tests with headgear. Energies from Walilko et al. (2005) 

were used to ensure the minisled and pendulum were successful at producing the desired energy 

range. Energies are for a Super Heavyweight. *SD is the standard deviation. 

Table B1. Flyweight Energies Transferred to Headforms 

Note. Estimated energies transferred to the head from the pendulum under direct impacts 

calculated for the MLSH and NOCSAE tests with headgear. Energies from Walilko et al. (2005) 

were used to ensure the minisled and pendulum were successful at producing the desired energy 

range. Energies are for a Flyweight. *SD is the standard deviation. 
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Appendix C.  Supplemental Figures  

(b) 

Figure C1. Scatter plots of instrumented mouthguard versus MLSH peak kinematics broken 

down by sensor group for (a) linear acceleration and (b) angular  velocity during indirect  impacts.  
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Figure C2. Scatter plots of IMM versus NOCSAE peak kinematics broken down by sensor group 

for (a) linear acceleration and (b) angular velocity during indirect  impacts.  
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Figure C3. Scatter plots of IMM versus MLSH peak kinematics broken down by sensor group 

for (a) linear acceleration and (b) angular velocity during direct  impacts.  
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Figure C4. Scatter plots of IMM versus NOCSAE peak kinematics broken down by sensor group 

for (a) linear acceleration and (b) angular velocity during direct  impacts.  
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All of USAARL’s science and technical informational documents are 
available for download from the Defense Technical Information Center. 
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