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Summary

Trust in automation (TIA) is a critical factor in aviation safety and performance, yet the
extent to which self-reported trust aligns with actual automation use remains unclear. This study
investigated relationships among trait, state, and behavioral measures of TIA in a simulated
multitasking aviation environment. Seventeen active-duty military aviators completed four trials
of the U.S. Army Aeromedical Research Laboratory (USAARL) Multi-Attribute Task Battery-1I
(MATB-II), during which automation was available across four subtasks. Automation reliability
(70-percent vs. 90-percent) and task load order were varied within subjects. Participants
completed standardized self-report measures of trait TIA (Adapted Propensity to Trust in
Technology Questionnaire), state TIA (Checklist for Trust between People and Automation), and
workload, alongside behavioral indicators of automation engagement: reliance (time automation
was engaged), delegation (user-initiated use), and compliance (prompt-initiated use). Data were
analyzed using linear and generalized linear mixed-effects models.

Results showed that reliance on automation significantly improved task performance,
with a 10-percent increase in automation use corresponding to a 1.06-point improvement in task
score (p <.001). In contrast, reliance did not reduce perceived workload (p = .957). Trait TIA
significantly predicted state TIA (B = 1.38, p =.047), but neither predicted behavioral use of
automation (all p > .48). Instead, contextual factors drove automation engagement: delegation
was more likely in dynamic subtasks such as resource management and tracking (both p <.001),
whereas higher cognitive workload increased compliance (p < .001). Delegation exerted a
stronger effect on sustained reliance than compliance (f = 0.309 vs. f =0.193, both p <.001),
underscoring the importance of operator agency when considering automation use behaviors.

These findings highlight a belief-behavior gap in TIA, suggesting that TIA self-report
measures alone are insufficient to predict aviators’ automation use. System designs that support
operator autonomy while providing workload-sensitive prompting may better calibrate reliance
and optimize human-machine teaming in aviation contexts.
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Introduction

Complex technology advancements are rapidly increasing and being integrated into a
wide variety of operational environments; this is especially true in military environments. As the
complexity of these technologies increases and as their role becomes more centralized to critical
tasks, humans who are interacting with advanced technology on a regular basis may find it more
difficult to oversee successful operation without assistance. Automated systems have the
potential to significantly improve the interactions between advanced technology and human
operators, optimizing the strengths of both human and non-human components to maximize the
frequency of successful outcomes. However, for an automation to be effective, it must be used
appropriately by the human operator, and appropriate use is largely dictated by the human
operator’s level of trust in the automation (TIA). For this reason, TIA has emerged as one of the
most significant considerations for engineering the next generation of complex technological
innovations.

Defining Trust in Automation

Trust is generally defined as “the attitude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty and vulnerability” (Lee & See, 2004); an
“agent” was traditionally considered to be another person that actively interacted with the
environment on behalf of an operator, but this definition has been found through decades of
research to be suitable for describing TIA as well (Kohn et al., 2021). Trust is a critical
component in ensuring proper human engagement and performance in any type of collaboration,
and this is no different with collaborations with automation, which includes any technology that
“actively selects data, transforms information, makes decisions, or controls processes” (Lee &
See, 2004, p. 50). Just like trust among humans, TIA is highly complex and is dynamically
influenced by many intertwining factors that can have immediate and significant impacts on a
user’s subsequent behavior during an automation-enhanced task (Lee & See, 2004; Hoff &
Bashir, 2015; Mayer et al., 1995).

In general, these factors have been identified by researchers as human-based, automation-
based, and environment-based (Lee & See, 2004; Hoff & Bashir, 2015). Human-based trust
factors are those that are related to the operator themselves, and include personality traits, pre-
existing knowledge, ethnicity, age, and gender (Lu & Sarter, 2019). Automation-based trust
factors are those that are inherent to the system being used, and include system reliability, ability,
robustness, and predictability. Environment-based factors are perhaps the most complicated and
difficult to measure element of trust in an interaction, and include things like prior experience,
societal impact, culture, team collaboration, and task type. TIA is also a highly dynamic
construct based upon one's experience across time, and experiences can influence trust-related
beliefs and behaviors in both the short-term (e.g., during an automated task) and long-term (e.g.,
a long career with experiences across multiple types of automations).

TIA is also complicated by its bi-directional nature, as optimal TIA lies in the middle of a
spectrum between under-trusting and over-trusting a system. The overall level of TIA impacts
the level of vigilance and sustainable attention an operator will give toward automation
(Krausman et al., 2022). When operators place too much trust in a system (also called
complacency), it can lead to an increased risk of mistakes, incidents, and accidents related to the
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user being “out of the loop” (Krausman et al., 2022; Lu & Sarter, 2019). Low levels of trust
cause disuse of an automated system and can lead to unnecessarily high levels of user workload
driven by the need to constantly (and unnecessarily) monitor automated systems to ensure safety
and accuracy (Lu & Sarter, 2019). Increased workload can significantly increase the risk of
mistakes and oversights that would otherwise be identified and accounted for by the automation
(Lee & See, 2004). Several researchers have hypothesized that calibrating appropriate levels of
user trust through measurement and modification of human-based, automation-based, and
environment-based TIA factors will result in ideal user reliance for optimal performance
outcomes (Lee & See, 2004; Mayer et al., 1995; Sanders et al., 2011).

Measuring TIA across Domains

Valid and reliable measurement of TIA across human-based, automation-based, and
environment-based domains is a difficult task. Trust is an emotional construct. As with any other
emotional variable, it is perceptual, which means the experience of trust is context-dependent,
based on a complex interaction of environmental and psychophysiological components, and
entirely unique to the individual experiencing it (Barrett, 2017). In the case of TIA, measures are
often used to inform the automation itself and therefore require data that are not only valid and
reliable but are also continuously collected and able to be analyzed and modeled at an interval or
ratio level of measurement (Wei et al., 2020). Researchers have attempted to overcome the
inherent obstacles of properly measuring TIA by developing a wide array of instruments and
metrics, ranging from simple single-item self-report measures to algorithmically constructed
values representing the integration of several different elements related to trust. While most
researchers advocate the use of a multi-modal approach to capturing TIA (a combination of
different types of TIA metrics collected simultaneously and interpreted holistically), single-type
TIA metrics generally fall into three broad categories: user-reported, physiological, and
behavioral.

A systematic review of measures across each of these three categories, and their
suitability for use in an aeromedical environment, was conducted by Ranes, Wilkins, Kenser, &
Caid-Loos (2023); behavioral measures of TIA were deemed to be of the highest quality and the
most suitable for aeromedical applications (see Table 1 below), although a number of user-
reported measures were also deemed valuable and feasible for capturing trait-based measures of
TIA prior to or immediately following a flight mission. The two highest-rated user-reported TIA
measures for an aeromedical environment were the Adapted Propensity to Trust Questionnaire
(Jessup, 2019) and the Checklist for Trust between People and Automation (Jian, 2000). Both of
these measures were included in the present study alongside passively-collected behavioral
measures. While several physiological measures of TIA were also found to be appropriate for
aeromedical applications (Ranes, Wilkins, Kenser, & Caid-Loos, 2023), these variables were all
related to a user’s level of physiological arousal, which is more appropriately aligned with levels
of stress rather than as a direct measure of TIA (Mayer et al., 1995; Lee & See, 2004; Hoff &
Bashir, 2015); for that reason, physiological measures of TIA were not included in the present
study.



Table 1. Behavioral Indicators of TIA With High Recommendation for Aeromedical
Environments (Ranes et al., 2023)

Behavioral Measures Description

Compliance with automation The operator uses recommendations given by the
recommendations automation

Delegation Allowing automation to handle a task when the operator

could do it manually

Intervention Overriding automation/taking manual control (even when
the automation is accurate)

Reliance The operator makes no attempt to override the automation
(even when mistakes are made)

Response Time How long it takes the operator to act after a prompt or alert
from the automation

Automation Reliability

A significant factor in an operator’s TIA levels is how reliable the automation is in
achieving its intended aims; unreliable automations decrease TIA, and vice-versa (Hoff &
Bashir, 2015). Operators can also experience low trait TIA before ever engaging with an
automated system if they have established a belief that the automation is unreliable prior to an
interaction (from peer reports, previous negative experiences with other automations, etc.).
Conversely, operators are more likely to go into an interaction with high trait TIA if they have
established a prior belief that the automation is reliable (Hoff & Bashir, 2015). Once an
interaction begins, operators are constantly fine-tuning their level of TIA based on feedback from
the system — if an automation helps them to achieve their aims and/or reduce the effort necessary
to achieve the aims, then trust in the system is naturally expected to increase. If the automation
fails to achieve the operator’s aims, then trust diminishes. Automation reliability also provides
context for establishing the appropriateness of an operator’s level of TIA — high TIA in a low-
reliability automation condition and/or low TIA in a high-reliability automation condition are
inappropriate levels of TIA that both present risks to subsequent task performance.

Mediators Between TIA and Performance

In order to properly measure and respond to dynamic changes in TIA during an
automation-assisted task, it is critical to consider and quantify key mediators in the relationship
between TIA and subsequent performance. Once patterns of mediation are properly understood,
continuous monitoring of key mediators can be used to predict TIA and subsequent performance
in real time, allowing for valuable dynamic adjustments to the automated system. While there are
countless potential mediating variables that come into play for individual trust and performance
scenarios, there are three critical TIA mediators that have been repeatedly identified across
studies to influence the population at large: difficulty of the automated task, cognitive workload,
and propensity to trust automation.



Difficulty of the automated task.

Difficulty of the task has also been identified as a critical environmental factor in shaping
trust-related behaviors during human-automation interaction (Lee & See, 2004; Hoff & Bashir,
2015). While it may be assumed that operators are more likely to rely on automation when task
demands are high, the relationship between task difficulty and automation use is complex and
context dependent. Some studies suggest that users may engage automation more frequently in
difficult or high-load tasks to reduce cognitive burden, while others indicate that high task
demands can cause users to disengage from automation due to increased perceived vulnerability
or reduced perceived control (Parasuraman et al., 2008; Drnec et al., 2016). These contradictory
patterns suggest that task difficulty may interact with other factors, such as individual differences
or the mode of automation engagement, to determine actual operator behavior. In the present
study, we explored the extent to which task type influenced the use of automation, particularly in
relation to user-initiated versus system-prompted behaviors.

Cognitive workload.

Increases in an operator’s cognitive workload have been shown in multiple instances to
significantly increase TIA (regardless of operators’ self-reported trait-level TIA), and more
specifically increase the likelihood of complacency even when an automation is unreliable
(Parasuraman et al., 2008). Other studies have suggested a bi-directional relationship where
workload is also influenced by TIA; as trust in an unreliable automation goes down, subjects
report increased cognitive workload (Park et al., 2019). The present study observed changes to
TIA (user-reported and behavioral) and cognitive workload in two types of conditions —
unreliable automation and reliable automation — to evaluate this relationship. The U.S. Army
Aeromedical Research Laboratory (USAARL) MATB-II has a built-in measure of perceived
workload that users are prompted to respond to multiple times throughout each trial. This
measure served as a subjective source of cognitive workload data for the present study.

Propensity to trust automated systems.

While frequently included as a measure of TIA, an individual’s propensity to trust
automated systems is less dynamic than the learned TIA that evolves during an automated task.
Hoff and Bashir’s (2015) theoretical model of TIA classifies an individual’s propensity to trust
as an initial learned aspect of trust that influences subsequent interactions with automated
systems. It can be thought of as a baseline level of TIA that an operator brings with them prior to
each interaction with an automated system. The Adapted Propensity to Trust Automation
Questionnaire (APTQ); Jessup et al., 2019) was used in the present study to capture this initial
TIA level prior to a subject’s interaction with the tasks or automated systems.

While many publications on TIA have accounted for these mediators in a theoretical
model, there are fewer studies that have quantified the effects of how TIA and its mediators
impact task performance, and even fewer that take into account variations in the level of an
automation’s reliability. Automation reliability is an important component that offers a sense of
whether an operator’s level of TIA is appropriate to the conditions at hand; high TIA for a low-
reliability automation (and vice versa) both present risks for degraded performance. Previous
studies that have incorporated both mediators and variable automation quality are largely specific



to tasks that have little to no relevance for acromedical operations. In order to gain a sense of
how TIA is affected by recordable mediators, and how it subsequently impacts downstream
performance, we need to gain a sense of how these variables interact to predict when operators
may experience a shift in TIA that potentially jeopardizes their ability to interact safely with
automated technology.

Purpose of the Present Study

The overall goal of this study was to evaluate the relationship between operator TIA and
actual use of automation on a series of simulated aeromedical tasks using USAARL Multi-
Attribute Task Battery (MATB-II). In addition to the two primary variables of interest (TIA and
automation use), the study included outcome measures of subjects’ task performance scores and
cognitive workload ratings to gain a sense of whether patterns in automation use reflected
operator gains in performance or cognitive load. Analyses were designed to also examine the
relationships among the type of task being automated, levels of operator control (user-initiated
automation versus system-prompted automation), operators’ cognitive workload, and operators’
propensity to trust technology (or trait-level TIA) to determine how varying levels of TIA and
different types of automation engagement strategies impact automation use patterns, including
downstream task performance and workload.

Methods

This study employed a within-subjects design in which participants completed four trials
of a simulated aviation multitasking platform. Each trial required participants to manage four
concurrent tasks. Automation could be voluntarily initiated by the participant for any of the tasks
at any time (referred to as delegation), or it could be engaged in response to a prompt that came
on screen when task performance dipped below a certain threshold (referred to as compliance).
Automation reliability (70-percent vs. 90-percent accurate) and task difficulty load order were
systematically varied and randomized across trials. Each trial lasted approximately 5 minutes.

Subjects

The study protocol was reviewed and approved by the USAARL Scientific Review
Committee (protocol number 2023-019) and USAMRDC Institutional Review Board (IRB) (IRB
number M-11078). Study participants were 17 adult U.S. Army-rated aviators who possessed a
valid DD-2292 (“up-slip” indicating clearance for flight duties). Participants were eligible if they
were at least 18 years of age, in good health per Army aviation standards, and able to follow
verbal and written instructions in English. Exclusion criteria included current use of sedating
medications, alcohol consumption within the prior 24 hours, nicotine use within 2 hours, or
caffeine consumption within 16 hours of data collection, in accordance with Army Regulation
(AR) 40-8 guidance and prior recommendations for reducing variability in physiological
measures (Department of the Army, 2022). Compliance with inclusion and exclusion criteria was
assessed via self-report prior to participation. The final sample had a mean age of 39.4 years
(8D = 5.1) and were predominantly male (n = 16). Mean total flight hours for the sample was
2187.6 (SD =1221.0).



Procedures

Participants scheduled individual study sessions at the USAARL and reported to the
MATB-II computer laboratory. Upon arrival, a study technician provided an overview of the
study, explained the activities to be performed, and reviewed the informed consent form. After
providing written consent, participants completed a brief set of computer-administered
questionnaires, including a demographics and personal history survey and an adapted Propensity
to Trust Questionnaire.

Participants then received training on the subtasks of the USAARL MATB-II platform,
following the procedures outlined in the MATB-II manual (Vogl et al., 2023). Training covered
task rules, self-reported workload procedures, and the use of automation prompts and controls.
Participants were given practice opportunities until they demonstrated baseline competency on
each subtask.

Following training, participants completed four experimental trials, each lasting
approximately five minutes. During each trial, participants managed four concurrent subtasks
while automation support was available for all tasks. Automation reliability was manipulated
between trials, with two blocks presented at 70-percent reliability and two at 90-percent
reliability, randomized across participants. After each trial, participants completed the Checklist
for Trust between People and Automation. Participants were given a two-minute seated rest
break between trials.

Upon completion of the fourth trial, participants were debriefed and released. Total
participation time ranged from 90 to 120 minutes. Note that physiological measures such as
electrocardiogram and eye tracking were collected during the study but are not included in the
present analyses.

Data Analysis

Analyses were conducted to examine the effects of automation use, automation
reliability, task load, and individual differences on performance, workload, and trust in
automation. Data were preprocessed to exclude incomplete trials and to align behavioral and
self-report measures by trial. All statistical analyses were performed in R (version 4.5.0). Internal
consistency of multi-item questionnaires was evaluated using Cronbach’s alpha (see Materials
section for specific questionnaires used in the analyses). Linear mixed-effects models (LMMs)
were used to examine relationships between automation use and overall task performance.
Subjective workload ratings from MATB-II were analyzed using LMMs with percentage of
overall task time with automation engaged (reliance) as a predictor. Random intercepts were
specified for participants to account for repeated measures. Demographic and experiential
variables (e.g., age, flight hours, video game experience) were entered as predictors in models of
task performance.

Video game experience was treated categorically (low, moderate, high) to test for
nonlinear associations. Trial-level predictors included automation reliability (70-percent vs. 90-
percent) and task load order (3-9-6-9-3 vs. 9-3-9-6-9). These were modeled as fixed effects in
analyses of reliance and other behavioral measures. Relationships between trait-level trust, state-



level trust, and behavioral indicators of trust were examined. Automation engagement was
separated into two categories for analysis: compliance and delegation. Compliance was defined
as engaging automation following a system prompt, while delegation was defined as engaging
automation without a prompt. Mixed-effects logistic regression models were specified for binary
outcomes, while LMMs were used for continuous outcomes. Models included task type,
workload, and trust measures as predictors. In cases where outcome variability was low,
penalized logistic regression (Firth method) was used to verify model estimates. Reliance models
were further stratified by type of automation engagement (delegation versus compliance) to
assess their differential contributions to sustained automation use.

Materials

Data were collected on demographic characteristics, trust in automation, behavioral
indicators of trust, task performance, cognitive workload, and propensity to trust automation.
Instruments and systems used in the study are described below.

Demographics and Personal History

Participants completed a brief demographics and personal history questionnaire
developed by the investigators. Items included age, sex, rank, race/ethnicity, education history,
flight hours, prior video game experience, use of automated technology, and confirmation of
eligibility criteria. These variables were collected to describe the sample and to serve as potential
covariates or moderators in analyses.

Trust in Automation Data
Propensity to trust in automation (trait-level TIA).

The Adapted Propensity to Trust in Technology Questionnaire (APTQ); Jessup et al.,
2019) was administered prior to the experimental trials. This 6-item instrument assesses
individual differences in propensity to trust automation, with items rated on a 5-point Likert
scale (1 = strongly disagree, 5 = strongly agree). The APTQ has demonstrated superior reliability
and predictive validity relative to broader technology trust scales (Jessup et al., 2019).

Post-trial trust in automation checklist (state-level TIA).

Trust in automation during task performance was measured with the 12-item Checklist
for Trust between People and Automation (Jian et al., 2000). This measure, widely cited in the
literature (e.g., Kohn et al., 2021; Ranes et al., 2023), includes items reflecting both trust and
distrust. Responses are provided on a 7-point scale, and items may be combined into a single
score or scored separately for trust and distrust. The checklist was administered following each
of the four experimental trials.

Cognitive Workload

Cognitive workload was assessed both subjectively and behaviorally. Within MATB-II,
operators were periodically prompted to provide subjective workload ratings using a graphical
user interface (GUI)-based sliding scale. These ratings, along with response latencies, were
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recorded automatically by the system. Physiological data were collected for exploratory purposes
related to workload, but were not included in the present analyses. Pupillometry and gaze
behavior were recorded using the Pupil Labs Core eye-tracking system (200 hertz [Hz] sampling
rate), and cardiac activity was measured with the Shimmer3 electrocardiogram (ECG) system
(512 Hz sampling rate). Data streams were synchronized through Lab Streaming Layer. These
measures were intended to serve as indices of perceived risk and cognitive workload in future
analyses.

Simulated Task Environment
Computerized aviation task battery.

Experimental trials were conducted on the USAARL MATB-II, a multitasking simulation
platform originally derived from the NASA MATB and customized for aviation research (Vogl
et al., 2023). The MATB-II engages participants in four concurrent subtasks typical of the
aviation domain: system monitoring, communications, target tracking, and resource
management. Participants interacted with the simulation using a joystick (nondominant hand)
and computer mouse (dominant hand). Task demand was manipulated via pre-generated
parameter files. Performance (task score) and workload measures were automatically captured
and time-stamped within the MATB-II system.

Automation system and behavioral TIA.

The Virtual Offloading Guidance Logic (VOGL) panel embedded in MATB-II provided
automation support for each subtask. Participants could engage or disengage automation
manually via mouse controls, or automation could be initiated by system prompts or forced
handovers coded in the parameter files. Automation reliability was defined by target accuracy
thresholds set at either 70-percent or 90-percent and implemented separately across subtasks.
Reliability manipulations were operationalized by adjusting response latencies and performance
bounds to approximate the target reliability level.

Behavioral trust in automation was captured through automated logs of operator
interactions with VOGL. Measures included compliance (automation engaged following a
prompt), delegation (automation engaged without a prompt), and reliance (total time automation
engaged).

This space is intentionally blank.
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Figure 1. Screenshot from the MATB-II with VOGL automation dashboard (bottom left).

Results

Analyses examined the effects of automation use, automation reliability, task load, and
individual differences on performance, workload, and trust in automation. Results are presented
in five sections: (1) task performance and workload, (2) effects of individual differences, (3)
automation reliability and task load conditions, (4) relationships among trust measures, and (5)
behavioral trust outcomes (reliance, delegation, compliance).

Task Performance and Workload

Reliance on automation significantly improved overall task performance. A 10-percent
increase in automation use was associated with an average increase of 1.06 points in task score
(p <.001), indicating a strong positive effect of automation on multitasking accuracy. By
contrast, automation use did not significantly reduce cognitive workload ratings. The estimated
effect of reliance on subjective workload was near zero (B =—0.059), and the relationship was
nonsignificant (p = 0.957), suggesting that participants did not perceive the use of automation
during the task as reducing overall cognitive demands.

This space is intentionally blank.
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Figure 2. Performance (task score) and cognitive workload effects based on reliance (percent of
task time with automation engaged).

Effects of Individual Differences

Neither age nor total flight hours significantly predicted task score. However, video game
experience was a significant predictor in certain cases. Participants reporting moderate video
game experience (5-15 hours/week) achieved task scores approximately 5.83 points higher than
participants with little or no gaming experience (less than 5 hours per week; p <.05). This effect
did not hold true for the heavy gaming group (more than 15 hours per week), who did not
demonstrate a meaningful task score difference from the other groups. However, uneven group
membership is likely contributing to this effect (see table 2), and findings should be interpreted
with caution.

Table 2. Counts of Self-Reported Video Game Experience Categories

Video Game Experience Count Of Subjects
Less than 5 hours per week 13
5-15 hours per week 2
More than 15 hours per week 2

Automation Reliability and Task Load Conditions

Automation reliability (70-percent vs. 90-percent) and task load condition (order of
difficulty: 3-9-6-9-3 vs. 9-3-9-6-9) did not significantly predict automation use. Across
participants, automation was engaged at similar rates regardless of programmed reliability levels
or the trial sequence of task difficulty (all p > .10).

Relationships Among Trust Measures

A linear mixed-effects model was fitted to examine the relationship between trait trust
(APTQ) and state trust (TIA Checklist total score), with random intercepts for subjects and tasks.

10



Results indicated a significant positive effect of trait trust on state trust (p = 1.380, SE = 0.637,
t(15) = 2.165, p = .047), suggesting that higher APTQ scores were associated with greater state
trust scores, even when considering situational factors like task scores and automation use
(reliance). The model intercept was also significant (p = 34.740, SE = 14.024, «(15)=2.477,p =
.026), reflecting a moderate baseline level of state trust when trait trust equals zero. Random
effects revealed substantial variability in trust scores across subjects (6? = 105.39, SD = 10.27),
suggesting that individual differences explained a considerable portion of the variance in trust
scores. Self-reported automation use frequency did not significantly predict state trust scores nor
behavioral use of automation, and differences between frequent, moderate, and infrequent users
were not statistically significant. Finally, neither trait trust nor state trust significantly predicted
behavioral Reliance (all p > .48), indicating no relationships between self-reported TIA beliefs
and actual automation use.

Behavioral Trust Outcomes (Delegation, Compliance, Reliance)
Delegation.

The likelihood to delegate a task to automation (i.e., user-initiated automation use) was
not significantly associated with trait trust (p = 0.738), automation use frequency (p > 0.75), or
state trust (p = 0.990). However, task type did significantly predict delegation. Participants were
more likely to delegate in resource management and tracking tasks compared to communications
or system monitoring (both p <.001). These tasks involve continuous monitoring or dynamic
resource allocation, which may encourage greater automation use patterns.

Delegation Instances by Task Type
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Figure 3. Count of delegation instances across different MATB-II task types.

Compliance.

Compliance with automation prompts was not significantly associated with trait trust
(p =0.716) or state trust (p = 0.386). Cognitive workload significantly predicted compliance:
Higher workload was associated with greater likelihood of complying with prompts (p <.001). A
penalized Firth logistic regression confirmed workload as a robust predictor (p = 0.036). Unlike
delegation, compliance did not vary by task type (p > .10).
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Figure 4. Average cognitive workload ratings between tasks where automation prompts were
followed (compliance) versus tasks where prompts were not followed.

Reliance.

Reliance was more strongly influenced by delegation (B = 0.309, SE = 0.041, #(267) =
7.545, p <.001) than compliance (f = 0.193, SE = 0.052, #(261) = 3.744, p <.001). These results
suggest that user-initiated automation engagement (delegation) produces greater sustained
automation use than system-prompted engagement (compliance).

Summary

Automation use enhanced performance but did not alleviate perceived workload.
Individual differences such as age and flight hours were not predictive of outcomes, though
participants reporting moderate video game experience performed better than those with little or
no gaming experience (an effect that should be interpreted cautiously given uneven group sizes).
Neither automation reliability nor task load condition influenced automation use, indicating that
engagement with automation was stable across these manipulations.

Trait trust in automation (APTQ) was positively associated with state trust ratings (TIA
Checklist), but neither trait nor state trust measures (nor self-reported prior automation use)
predicted behavioral reliance. Instead, behavioral trust outcomes were shaped by task and
workload demands. Delegation (user-initiated automation use) occurred more frequently in
dynamic tasks such as resource management and tracking, while compliance (prompted
automation use) increased with higher cognitive workload regardless of task type. Moreover,
delegation exerted a stronger influence on sustained reliance than compliance, underscoring the
importance of user agency in shaping automation use patterns.
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Discussion

The present study examined how TIA relates to operator performance, workload, and
automation use behaviors in a simulated aviation multitasking environment. Analyses focused on
five domains: task performance and workload, individual differences, automation reliability and
task load conditions, relationships among trust measures, and behavioral trust outcomes
(reliance, delegation, and compliance). Overall, findings highlight a disconnect between self-
reported measures of trust and actual operator behavior, underscoring the importance of
situational and task-based factors in shaping automation use.

Reliance on automation significantly improved task performance, reinforcing the
established finding that well-designed automation can enhance objective performance outcomes
in complex environments (e.g., Parasuraman et al., 2008; Sato et al., 2020). However,
automation use did not reduce subjective workload, suggesting that aviators continued to monitor
automation even when it performed reliably. This discrepancy between objective task relief and
subjective experience aligns with prior research on vigilance and “out-of-the-loop” phenomena,
which indicate that operators may not perceive automation as reducing cognitive demands
because oversight responsibilities remain (Krausman et al., 2022; Lu & Sarter, 2019). These
findings suggest that while automation may free attentional resources, it does not necessarily
make the task feel easier to the operator, which is a critical distinction for aviation contexts
where workload management is essential.

Neither age nor flight hours predicted performance outcomes, indicating that aviation
experience alone does not shape automation use patterns in this context. However, moderate
video game experience (5-15 hours per week) was associated with significantly better
multitasking performance relative to participants with little or no gaming experience. Although
weakened by uneven group sizes within the sample, this result tentatively supports prior
evidence that action video game play may enhance attentional control, visual-motor
coordination, and task-switching ability (Green & Bavelier, 2003; Dye et al., 2009; Alzahabi &
Becker, 2013). Interestingly, this effect did not extend to heavy gamers, who did not differ
significantly from other groups. Given the very small subgroup sizes, these findings should be
interpreted with caution, though they suggest that moderate levels of gaming may provide
transferable cognitive benefits without introducing potential downsides of heavy gaming (e.g.,
fatigue or desensitization).

Automation reliability (70-percent vs. 90-percent) and task load condition (easy-to-hard
vs. hard-to-easy orderings) did not significantly predict reliance. This suggests that within the
relatively high reliability ranges tested, aviators engaged automation at similar rates regardless of
small differences in accuracy. Prior studies have found that larger manipulations of reliability
(particularly those involving low or variable reliability) are more likely to affect operator
reliance and trust (Dzindolet et al., 2003; Wickens & Dixon, 2007). The lack of sensitivity to
moderate reliability differences in this study may indicate that aviators treated both 70-percent
and 90-percent as “good enough” for offloading in multitasking environments.

The study revealed a consistent link between trait trust (APTQ) and state trust (TIA
Checklist), echoing prior work showing that dispositional trust tendencies influence situational
trust ratings (Hoff & Bashir, 2015; Lee & See, 2004). However, neither trait nor state trust
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predicted actual automation use behaviors (reliance, delegation, or compliance). This gap
between self-reported beliefs and observed behaviors reflects a broader attitude-behavior
inconsistency well-documented in social psychology (Ajzen et al., 2018; Armitage & Conner,
2005). For TIA research, this finding is critical: Relying solely on questionnaires risks
misrepresenting operator trust levels, especially in dynamic, high-load environments where
situational risk and task demands may override individual predispositions.

Behavioral measures of TIA revealed that contextual factors, not self-reported trust,
drove automation use. Task type significantly predicted delegation, with operators more likely to
self-engage automation in dynamic tasks such as resource management and tracking. These tasks
require continuous monitoring and dynamic resource allocation, making them natural candidates
for offloading. This pattern is consistent with ecological models of trust, which emphasize
context-dependent trust behaviors shaped by task demands (Drnec et al., 2016). In contrast,
compliance was driven by workload rather than task type. Aviators were more likely to accept
automation prompts under high cognitive load conditions, reflecting a pragmatic strategy to
manage limited attentional resources. This aligns with theories of decision-making under load,
where individuals adopt simplified strategies or accept external guidance to cope with high task
demands (Parasuraman & Riley, 1997).

When it came to sustained automation use over the course of a task, delegation had a
stronger impact on sustained reliance than compliance. When operators chose to engage
automation proactively, they were more likely to leave it engaged for longer durations compared
to when automation was activated in response to system prompts. This suggests that operator
agency plays a critical role in shaping automation use. Prior research in human-machine teaming
has emphasized the importance of perceived control in fostering trust and sustained engagement
(de Visser et al., 2019). Designing systems that preserve operator autonomy while providing
well-calibrated prompts may therefore optimize both performance and reliance outcomes.

The study has several limitations. The sample size was small (N = 17), with uneven
subgroup distributions for individual difference variables such as video game experience. The
reliability manipulation covered a narrow range (70-percent vs. 90-percent), which may not
generalize to scenarios involving highly unreliable or adaptive automation. Although
physiological data (ECG, pupillometry) were collected, they were not analyzed in this report,
limiting triangulation of trust and workload measures. Finally, the MATB-II is a validated
multitasking simulation but does not fully replicate the operational complexity of real-world
aviation environments.

Future research should examine broader ranges of automation reliability and task
difficulty to better understand thresholds at which operators modulate reliance. Improved
workload measures (including physiological indicators) may provide richer insight into how trust
and workload interact. Larger and more diverse samples of aviators are needed to validate
individual difference effects, including potential transfer benefits from video gaming. Finally,
future studies should explore system designs that support operator agency while leveraging
prompts to encourage timely automation use, with an emphasis on developing trust measures that
capture behavior rather than belief.
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Conclusion

This study demonstrates that while automation reliably improves performance, its
influence on workload and trust is more complex. Self-reported trust measures were poor
predictors of actual automation use, highlighting a belief-behavior gap with direct implications
for the design of human-machine teams. Instead, task demands, workload, and operator agency
were the strongest predictors of automation engagement and use patterns. These findings
emphasize the need to move beyond questionnaire-based trust assessments toward behavioral
and context-sensitive measures that more accurately capture how operators interact with
automated systems in dynamic environments.
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