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Instead, contextual factors drove automation engagement: Delegation was more likely in dynamic subtasks such as resource management 
and tracking (both p < .001), whereas higher cognitive workload increased compliance (p < .001). Delegation exerted a stronger effect on 
sustained reliance than compliance (  = 0.309 vs.  = 0.193, both p < .001), underscoring the importance of operator agency when 
considering automation use behaviors.
These findings highlight a belief-behavior gap in TIA, suggesting that TIA self-report measures alone are insufficient to predict aviators’ 
automation use. System designs that support operator autonomy while providing workload-sensitive prompting may better calibrate reliance 
and optimize human-machine teaming in aviation contexts.
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Summary 

Trust in automation (TIA) is a critical factor in aviation safety and performance, yet the 

extent to which self-reported trust aligns with actual automation use remains unclear. This study 

investigated relationships among trait, state, and behavioral measures of TIA in a simulated 

multitasking aviation environment. Seventeen active-duty military aviators completed four trials 

of the U.S. Army Aeromedical Research Laboratory (USAARL) Multi-Attribute Task Battery-II 

(MATB-II), during which automation was available across four subtasks. Automation reliability 

(70-percent vs. 90-percent) and task load order were varied within subjects. Participants 

completed standardized self-report measures of trait TIA (Adapted Propensity to Trust in 

Technology Questionnaire), state TIA (Checklist for Trust between People and Automation), and 

workload, alongside behavioral indicators of automation engagement: reliance (time automation 

was engaged), delegation (user-initiated use), and compliance (prompt-initiated use). Data were 

analyzed using linear and generalized linear mixed-effects models. 

Results showed that reliance on automation significantly improved task performance, 

with a 10-percent increase in automation use corresponding to a 1.06-point improvement in task 

score (p < .001). In contrast, reliance did not reduce perceived workload (p = .957). Trait TIA 

significantly predicted state TIA (β = 1.38, p = .047), but neither predicted behavioral use of 

automation (all p > .48). Instead, contextual factors drove automation engagement: delegation 

was more likely in dynamic subtasks such as resource management and tracking (both p < .001), 

whereas higher cognitive workload increased compliance (p < .001). Delegation exerted a 

stronger effect on sustained reliance than compliance (β = 0.309 vs. β = 0.193, both p < .001), 

underscoring the importance of operator agency when considering automation use behaviors. 

These findings highlight a belief-behavior gap in TIA, suggesting that TIA self-report 

measures alone are insufficient to predict aviators’ automation use. System designs that support 

operator autonomy while providing workload-sensitive prompting may better calibrate reliance 

and optimize human-machine teaming in aviation contexts.  
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Introduction 

Complex technology advancements are rapidly increasing and being integrated into a 

wide variety of operational environments; this is especially true in military environments. As the 

complexity of these technologies increases and as their role becomes more centralized to critical 

tasks, humans who are interacting with advanced technology on a regular basis may find it more 

difficult to oversee successful operation without assistance. Automated systems have the 

potential to significantly improve the interactions between advanced technology and human 

operators, optimizing the strengths of both human and non-human components to maximize the 

frequency of successful outcomes. However, for an automation to be effective, it must be used 

appropriately by the human operator, and appropriate use is largely dictated by the human 

operator’s level of trust in the automation (TIA). For this reason, TIA has emerged as one of the 

most significant considerations for engineering the next generation of complex technological 

innovations. 

Defining Trust in Automation 

Trust is generally defined as “the attitude that an agent will help achieve an individual’s 

goals in a situation characterized by uncertainty and vulnerability” (Lee & See, 2004); an 

“agent” was traditionally considered to be another person that actively interacted with the 

environment on behalf of an operator, but this definition has been found through decades of 

research to be suitable for describing TIA as well (Kohn et al., 2021). Trust is a critical 

component in ensuring proper human engagement and performance in any type of collaboration, 

and this is no different with collaborations with automation, which includes any technology that 

“actively selects data, transforms information, makes decisions, or controls processes” (Lee & 

See, 2004, p. 50). Just like trust among humans, TIA is highly complex and is dynamically 

influenced by many intertwining factors that can have immediate and significant impacts on a 

user’s subsequent behavior during an automation-enhanced task (Lee & See, 2004; Hoff & 

Bashir, 2015; Mayer et al., 1995).  

 

In general, these factors have been identified by researchers as human-based, automation-

based, and environment-based (Lee & See, 2004; Hoff & Bashir, 2015). Human-based trust 

factors are those that are related to the operator themselves, and include personality traits, pre-

existing knowledge, ethnicity, age, and gender (Lu & Sarter, 2019). Automation-based trust 

factors are those that are inherent to the system being used, and include system reliability, ability, 

robustness, and predictability. Environment-based factors are perhaps the most complicated and 

difficult to measure element of trust in an interaction, and include things like prior experience, 

societal impact, culture, team collaboration, and task type. TIA is also a highly dynamic 

construct based upon one's experience across time, and experiences can influence trust-related 

beliefs and behaviors in both the short-term (e.g., during an automated task) and long-term (e.g., 

a long career with experiences across multiple types of automations).  

 

TIA is also complicated by its bi-directional nature, as optimal TIA lies in the middle of a 

spectrum between under-trusting and over-trusting a system. The overall level of TIA impacts 

the level of vigilance and sustainable attention an operator will give toward automation 

(Krausman et al., 2022). When operators place too much trust in a system (also called 

complacency), it can lead to an increased risk of mistakes, incidents, and accidents related to the 
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user being “out of the loop” (Krausman et al., 2022; Lu & Sarter, 2019). Low levels of trust 

cause disuse of an automated system and can lead to unnecessarily high levels of user workload 

driven by the need to constantly (and unnecessarily) monitor automated systems to ensure safety 

and accuracy (Lu & Sarter, 2019). Increased workload can significantly increase the risk of 

mistakes and oversights that would otherwise be identified and accounted for by the automation 

(Lee & See, 2004). Several researchers have hypothesized that calibrating appropriate levels of 

user trust through measurement and modification of human-based, automation-based, and 

environment-based TIA factors will result in ideal user reliance for optimal performance 

outcomes (Lee & See, 2004; Mayer et al., 1995; Sanders et al., 2011). 

Measuring TIA across Domains 

Valid and reliable measurement of TIA across human-based, automation-based, and 

environment-based domains is a difficult task. Trust is an emotional construct. As with any other 

emotional variable, it is perceptual, which means the experience of trust is context-dependent, 

based on a complex interaction of environmental and psychophysiological components, and 

entirely unique to the individual experiencing it (Barrett, 2017). In the case of TIA, measures are 

often used to inform the automation itself and therefore require data that are not only valid and 

reliable but are also continuously collected and able to be analyzed and modeled at an interval or 

ratio level of measurement (Wei et al., 2020). Researchers have attempted to overcome the 

inherent obstacles of properly measuring TIA by developing a wide array of instruments and 

metrics, ranging from simple single-item self-report measures to algorithmically constructed 

values representing the integration of several different elements related to trust. While most 

researchers advocate the use of a multi-modal approach to capturing TIA (a combination of 

different types of TIA metrics collected simultaneously and interpreted holistically), single-type 

TIA metrics generally fall into three broad categories: user-reported, physiological, and 

behavioral.  

 

A systematic review of measures across each of these three categories, and their 

suitability for use in an aeromedical environment, was conducted by Ranes, Wilkins, Kenser, & 

Caid-Loos (2023); behavioral measures of TIA were deemed to be of the highest quality and the 

most suitable for aeromedical applications (see Table 1 below), although a number of user-

reported measures were also deemed valuable and feasible for capturing trait-based measures of 

TIA prior to or immediately following a flight mission. The two highest-rated user-reported TIA 

measures for an aeromedical environment were the Adapted Propensity to Trust Questionnaire 

(Jessup, 2019) and the Checklist for Trust between People and Automation (Jian, 2000). Both of 

these measures were included in the present study alongside passively-collected behavioral 

measures. While several physiological measures of TIA were also found to be appropriate for 

aeromedical applications (Ranes, Wilkins, Kenser, & Caid-Loos, 2023), these variables were all 

related to a user’s level of physiological arousal, which is more appropriately aligned with levels 

of stress rather than as a direct measure of TIA (Mayer et al., 1995; Lee & See, 2004; Hoff & 

Bashir, 2015); for that reason, physiological measures of TIA were not included in the present 

study. 
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Table 1. Behavioral Indicators of TIA With High Recommendation for Aeromedical 

Environments (Ranes et al., 2023) 

 

Behavioral Measures Description 

Compliance with automation 

recommendations 

The operator uses recommendations given by the 

automation 

Delegation Allowing automation to handle a task when the operator 

could do it manually 

Intervention Overriding automation/taking manual control (even when 

the automation is accurate) 

Reliance The operator makes no attempt to override the automation 

(even when mistakes are made)  

Response Time How long it takes the operator to act after a prompt or alert 

from the automation 

 

Automation Reliability 

A significant factor in an operator’s TIA levels is how reliable the automation is in 

achieving its intended aims; unreliable automations decrease TIA, and vice-versa (Hoff & 

Bashir, 2015). Operators can also experience low trait TIA before ever engaging with an 

automated system if they have established a belief that the automation is unreliable prior to an 

interaction (from peer reports, previous negative experiences with other automations, etc.). 

Conversely, operators are more likely to go into an interaction with high trait TIA if they have 

established a prior belief that the automation is reliable (Hoff & Bashir, 2015). Once an 

interaction begins, operators are constantly fine-tuning their level of TIA based on feedback from 

the system – if an automation helps them to achieve their aims and/or reduce the effort necessary 

to achieve the aims, then trust in the system is naturally expected to increase. If the automation 

fails to achieve the operator’s aims, then trust diminishes. Automation reliability also provides 

context for establishing the appropriateness of an operator’s level of TIA – high TIA in a low-

reliability automation condition and/or low TIA in a high-reliability automation condition are 

inappropriate levels of TIA that both present risks to subsequent task performance. 

Mediators Between TIA and Performance 

In order to properly measure and respond to dynamic changes in TIA during an 

automation-assisted task, it is critical to consider and quantify key mediators in the relationship 

between TIA and subsequent performance. Once patterns of mediation are properly understood, 

continuous monitoring of key mediators can be used to predict TIA and subsequent performance 

in real time, allowing for valuable dynamic adjustments to the automated system. While there are 

countless potential mediating variables that come into play for individual trust and performance 

scenarios, there are three critical TIA mediators that have been repeatedly identified across 

studies to influence the population at large: difficulty of the automated task, cognitive workload, 

and propensity to trust automation. 



4 

Difficulty of the automated task. 

Difficulty of the task has also been identified as a critical environmental factor in shaping 

trust-related behaviors during human-automation interaction (Lee & See, 2004; Hoff & Bashir, 

2015). While it may be assumed that operators are more likely to rely on automation when task 

demands are high, the relationship between task difficulty and automation use is complex and 

context dependent. Some studies suggest that users may engage automation more frequently in 

difficult or high-load tasks to reduce cognitive burden, while others indicate that high task 

demands can cause users to disengage from automation due to increased perceived vulnerability 

or reduced perceived control (Parasuraman et al., 2008; Drnec et al., 2016). These contradictory 

patterns suggest that task difficulty may interact with other factors, such as individual differences 

or the mode of automation engagement, to determine actual operator behavior. In the present 

study, we explored the extent to which task type influenced the use of automation, particularly in 

relation to user-initiated versus system-prompted behaviors. 

Cognitive workload. 

Increases in an operator’s cognitive workload have been shown in multiple instances to 

significantly increase TIA (regardless of operators’ self-reported trait-level TIA), and more 

specifically increase the likelihood of complacency even when an automation is unreliable 

(Parasuraman et al., 2008). Other studies have suggested a bi-directional relationship where 

workload is also influenced by TIA; as trust in an unreliable automation goes down, subjects 

report increased cognitive workload (Park et al., 2019). The present study observed changes to 

TIA (user-reported and behavioral) and cognitive workload in two types of conditions – 

unreliable automation and reliable automation – to evaluate this relationship. The U.S. Army 

Aeromedical Research Laboratory (USAARL) MATB-II has a built-in measure of perceived 

workload that users are prompted to respond to multiple times throughout each trial. This 

measure served as a subjective source of cognitive workload data for the present study.  

Propensity to trust automated systems. 

While frequently included as a measure of TIA, an individual’s propensity to trust 

automated systems is less dynamic than the learned TIA that evolves during an automated task. 

Hoff and Bashir’s (2015) theoretical model of TIA classifies an individual’s propensity to trust 

as an initial learned aspect of trust that influences subsequent interactions with automated 

systems. It can be thought of as a baseline level of TIA that an operator brings with them prior to 

each interaction with an automated system. The Adapted Propensity to Trust Automation 

Questionnaire (APTQ; Jessup et al., 2019) was used in the present study to capture this initial 

TIA level prior to a subject’s interaction with the tasks or automated systems. 

While many publications on TIA have accounted for these mediators in a theoretical 

model, there are fewer studies that have quantified the effects of how TIA and its mediators 

impact task performance, and even fewer that take into account variations in the level of an 

automation’s reliability. Automation reliability is an important component that offers a sense of 

whether an operator’s level of TIA is appropriate to the conditions at hand; high TIA for a low-

reliability automation (and vice versa) both present risks for degraded performance. Previous 

studies that have incorporated both mediators and variable automation quality are largely specific 
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to tasks that have little to no relevance for aeromedical operations. In order to gain a sense of 

how TIA is affected by recordable mediators, and how it subsequently impacts downstream 

performance, we need to gain a sense of how these variables interact to predict when operators 

may experience a shift in TIA that potentially jeopardizes their ability to interact safely with 

automated technology. 

 

Purpose of the Present Study 

The overall goal of this study was to evaluate the relationship between operator TIA and 

actual use of automation on a series of simulated aeromedical tasks using USAARL Multi-

Attribute Task Battery (MATB-II). In addition to the two primary variables of interest (TIA and 

automation use), the study included outcome measures of subjects’ task performance scores and 

cognitive workload ratings to gain a sense of whether patterns in automation use reflected 

operator gains in performance or cognitive load. Analyses were designed to also examine the 

relationships among the type of task being automated, levels of operator control (user-initiated 

automation versus system-prompted automation), operators’ cognitive workload, and operators’ 

propensity to trust technology (or trait-level TIA) to determine how varying levels of TIA and 

different types of automation engagement strategies impact automation use patterns, including 

downstream task performance and workload. 

Methods 

This study employed a within-subjects design in which participants completed four trials 

of a simulated aviation multitasking platform. Each trial required participants to manage four 

concurrent tasks. Automation could be voluntarily initiated by the participant for any of the tasks 

at any time (referred to as delegation), or it could be engaged in response to a prompt that came 

on screen when task performance dipped below a certain threshold (referred to as compliance). 

Automation reliability (70-percent vs. 90-percent accurate) and task difficulty load order were 

systematically varied and randomized across trials. Each trial lasted approximately 5 minutes. 

Subjects 

The study protocol was reviewed and approved by the USAARL Scientific Review 

Committee (protocol number 2023-019) and USAMRDC Institutional Review Board (IRB) (IRB 

number M-11078). Study participants were 17 adult U.S. Army-rated aviators who possessed a 

valid DD-2292 (“up-slip” indicating clearance for flight duties). Participants were eligible if they 

were at least 18 years of age, in good health per Army aviation standards, and able to follow 

verbal and written instructions in English. Exclusion criteria included current use of sedating 

medications, alcohol consumption within the prior 24 hours, nicotine use within 2 hours, or 

caffeine consumption within 16 hours of data collection, in accordance with Army Regulation 

(AR) 40-8 guidance and prior recommendations for reducing variability in physiological 

measures (Department of the Army, 2022). Compliance with inclusion and exclusion criteria was 

assessed via self-report prior to participation. The final sample had a mean age of 39.4 years   

(SD = 5.1) and were predominantly male (n = 16). Mean total flight hours for the sample was 

2187.6 (SD = 1221.0). 
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Procedures 

Participants scheduled individual study sessions at the USAARL and reported to the 

MATB-II computer laboratory. Upon arrival, a study technician provided an overview of the 

study, explained the activities to be performed, and reviewed the informed consent form. After 

providing written consent, participants completed a brief set of computer-administered 

questionnaires, including a demographics and personal history survey and an adapted Propensity 

to Trust Questionnaire. 

Participants then received training on the subtasks of the USAARL MATB-II platform, 

following the procedures outlined in the MATB-II manual (Vogl et al., 2023). Training covered 

task rules, self-reported workload procedures, and the use of automation prompts and controls. 

Participants were given practice opportunities until they demonstrated baseline competency on 

each subtask. 

Following training, participants completed four experimental trials, each lasting 

approximately five minutes. During each trial, participants managed four concurrent subtasks 

while automation support was available for all tasks. Automation reliability was manipulated 

between trials, with two blocks presented at 70-percent reliability and two at 90-percent 

reliability, randomized across participants. After each trial, participants completed the Checklist 

for Trust between People and Automation. Participants were given a two-minute seated rest 

break between trials. 

Upon completion of the fourth trial, participants were debriefed and released. Total 

participation time ranged from 90 to 120 minutes. Note that physiological measures such as 

electrocardiogram and eye tracking were collected during the study but are not included in the 

present analyses. 

Data Analysis 

Analyses were conducted to examine the effects of automation use, automation 

reliability, task load, and individual differences on performance, workload, and trust in 

automation. Data were preprocessed to exclude incomplete trials and to align behavioral and 

self-report measures by trial. All statistical analyses were performed in R (version 4.5.0). Internal 

consistency of multi-item questionnaires was evaluated using Cronbach’s alpha (see Materials 

section for specific questionnaires used in the analyses). Linear mixed-effects models (LMMs) 

were used to examine relationships between automation use and overall task performance. 

Subjective workload ratings from MATB-II were analyzed using LMMs with percentage of 

overall task time with automation engaged (reliance) as a predictor. Random intercepts were 

specified for participants to account for repeated measures. Demographic and experiential 

variables (e.g., age, flight hours, video game experience) were entered as predictors in models of 

task performance.  

Video game experience was treated categorically (low, moderate, high) to test for 

nonlinear associations. Trial-level predictors included automation reliability (70-percent vs. 90-

percent) and task load order (3-9-6-9-3 vs. 9-3-9-6-9). These were modeled as fixed effects in 

analyses of reliance and other behavioral measures. Relationships between trait-level trust, state-
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level trust, and behavioral indicators of trust were examined. Automation engagement was 

separated into two categories for analysis: compliance and delegation. Compliance was defined 

as engaging automation following a system prompt, while delegation was defined as engaging 

automation without a prompt. Mixed-effects logistic regression models were specified for binary 

outcomes, while LMMs were used for continuous outcomes. Models included task type, 

workload, and trust measures as predictors. In cases where outcome variability was low, 

penalized logistic regression (Firth method) was used to verify model estimates. Reliance models 

were further stratified by type of automation engagement (delegation versus compliance) to 

assess their differential contributions to sustained automation use. 

Materials 

Data were collected on demographic characteristics, trust in automation, behavioral 

indicators of trust, task performance, cognitive workload, and propensity to trust automation. 

Instruments and systems used in the study are described below. 

Demographics and Personal History 

Participants completed a brief demographics and personal history questionnaire 

developed by the investigators. Items included age, sex, rank, race/ethnicity, education history, 

flight hours, prior video game experience, use of automated technology, and confirmation of 

eligibility criteria. These variables were collected to describe the sample and to serve as potential 

covariates or moderators in analyses. 

Trust in Automation Data 

Propensity to trust in automation (trait-level TIA). 

The Adapted Propensity to Trust in Technology Questionnaire (APTQ; Jessup et al., 

2019) was administered prior to the experimental trials. This 6-item instrument assesses 

individual differences in propensity to trust automation, with items rated on a 5-point Likert 

scale (1 = strongly disagree, 5 = strongly agree). The APTQ has demonstrated superior reliability 

and predictive validity relative to broader technology trust scales (Jessup et al., 2019). 

Post-trial trust in automation checklist (state-level TIA). 

Trust in automation during task performance was measured with the 12-item Checklist 

for Trust between People and Automation (Jian et al., 2000). This measure, widely cited in the 

literature (e.g., Kohn et al., 2021; Ranes et al., 2023), includes items reflecting both trust and 

distrust. Responses are provided on a 7-point scale, and items may be combined into a single 

score or scored separately for trust and distrust. The checklist was administered following each 

of the four experimental trials. 

Cognitive Workload 

Cognitive workload was assessed both subjectively and behaviorally. Within MATB-II, 

operators were periodically prompted to provide subjective workload ratings using a graphical 

user interface (GUI)-based sliding scale. These ratings, along with response latencies, were 
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recorded automatically by the system. Physiological data were collected for exploratory purposes 

related to workload, but were not included in the present analyses. Pupillometry and gaze 

behavior were recorded using the Pupil Labs Core eye-tracking system (200 hertz [Hz] sampling 

rate), and cardiac activity was measured with the Shimmer3 electrocardiogram (ECG) system 

(512 Hz sampling rate). Data streams were synchronized through Lab Streaming Layer. These 

measures were intended to serve as indices of perceived risk and cognitive workload in future 

analyses. 

Simulated Task Environment 

Computerized aviation task battery. 

Experimental trials were conducted on the USAARL MATB-II, a multitasking simulation 

platform originally derived from the NASA MATB and customized for aviation research (Vogl 

et al., 2023). The MATB-II engages participants in four concurrent subtasks typical of the 

aviation domain: system monitoring, communications, target tracking, and resource 

management. Participants interacted with the simulation using a joystick (nondominant hand) 

and computer mouse (dominant hand). Task demand was manipulated via pre-generated 

parameter files. Performance (task score) and workload measures were automatically captured 

and time-stamped within the MATB-II system. 

Automation system and behavioral TIA. 

The Virtual Offloading Guidance Logic (VOGL) panel embedded in MATB-II provided 

automation support for each subtask. Participants could engage or disengage automation 

manually via mouse controls, or automation could be initiated by system prompts or forced 

handovers coded in the parameter files. Automation reliability was defined by target accuracy 

thresholds set at either 70-percent or 90-percent and implemented separately across subtasks. 

Reliability manipulations were operationalized by adjusting response latencies and performance 

bounds to approximate the target reliability level. 

Behavioral trust in automation was captured through automated logs of operator 

interactions with VOGL. Measures included compliance (automation engaged following a 

prompt), delegation (automation engaged without a prompt), and reliance (total time automation 

engaged). 
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Figure 1. Screenshot from the MATB-II with VOGL automation dashboard (bottom left). 

Results 

Analyses examined the effects of automation use, automation reliability, task load, and 

individual differences on performance, workload, and trust in automation. Results are presented 

in five sections: (1) task performance and workload, (2) effects of individual differences, (3) 

automation reliability and task load conditions, (4) relationships among trust measures, and (5) 

behavioral trust outcomes (reliance, delegation, compliance). 

 

Task Performance and Workload 

Reliance on automation significantly improved overall task performance. A 10-percent 

increase in automation use was associated with an average increase of 1.06 points in task score 

(p < .001), indicating a strong positive effect of automation on multitasking accuracy. By 

contrast, automation use did not significantly reduce cognitive workload ratings. The estimated 

effect of reliance on subjective workload was near zero (β = –0.059), and the relationship was 

nonsignificant (p = 0.957), suggesting that participants did not perceive the use of automation 

during the task as reducing overall cognitive demands. 
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Figure 2. Performance (task score) and cognitive workload effects based on reliance (percent of 

task time with automation engaged). 

Effects of Individual Differences 

Neither age nor total flight hours significantly predicted task score. However, video game 

experience was a significant predictor in certain cases. Participants reporting moderate video 

game experience (5-15 hours/week) achieved task scores approximately 5.83 points higher than 

participants with little or no gaming experience (less than 5 hours per week; p < .05). This effect 

did not hold true for the heavy gaming group (more than 15 hours per week), who did not 

demonstrate a meaningful task score difference from the other groups. However, uneven group 

membership is likely contributing to this effect (see table 2), and findings should be interpreted 

with caution. 

Table 2. Counts of Self-Reported Video Game Experience Categories 

 

Video Game Experience Count Of Subjects 

Less than 5 hours per week 13 

5-15 hours per week 2 

More than 15 hours per week 2 

 

Automation Reliability and Task Load Conditions 

Automation reliability (70-percent vs. 90-percent) and task load condition (order of 

difficulty: 3-9-6-9-3 vs. 9-3-9-6-9) did not significantly predict automation use. Across 

participants, automation was engaged at similar rates regardless of programmed reliability levels 

or the trial sequence of task difficulty (all p > .10). 

Relationships Among Trust Measures 

A linear mixed-effects model was fitted to examine the relationship between trait trust 

(APTQ) and state trust (TIA Checklist total score), with random intercepts for subjects and tasks. 
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Results indicated a significant positive effect of trait trust on state trust (β = 1.380, SE = 0.637, 

t(15) = 2.165, p = .047), suggesting that higher APTQ scores were associated with greater state 

trust scores, even when considering situational factors like task scores and automation use 

(reliance). The model intercept was also significant (β = 34.740, SE = 14.024, t(15) = 2.477, p = 

.026), reflecting a moderate baseline level of state trust when trait trust equals zero. Random 

effects revealed substantial variability in trust scores across subjects (σ² = 105.39, SD = 10.27), 

suggesting that individual differences explained a considerable portion of the variance in trust 

scores. Self-reported automation use frequency did not significantly predict state trust scores nor 

behavioral use of automation, and differences between frequent, moderate, and infrequent users 

were not statistically significant. Finally, neither trait trust nor state trust significantly predicted 

behavioral Reliance (all p > .48), indicating no relationships between self-reported TIA beliefs 

and actual automation use. 

Behavioral Trust Outcomes (Delegation, Compliance, Reliance) 

Delegation. 

The likelihood to delegate a task to automation (i.e., user-initiated automation use) was 

not significantly associated with trait trust (p = 0.738), automation use frequency (p > 0.75), or 

state trust (p = 0.990). However, task type did significantly predict delegation. Participants were 

more likely to delegate in resource management and tracking tasks compared to communications 

or system monitoring (both p < .001). These tasks involve continuous monitoring or dynamic 

resource allocation, which may encourage greater automation use patterns. 

 

Figure 3. Count of delegation instances across different MATB-II task types. 

Compliance. 

Compliance with automation prompts was not significantly associated with trait trust     

(p = 0.716) or state trust (p = 0.386). Cognitive workload significantly predicted compliance: 

Higher workload was associated with greater likelihood of complying with prompts (p < .001). A 

penalized Firth logistic regression confirmed workload as a robust predictor (p = 0.036). Unlike 

delegation, compliance did not vary by task type (p > .10). 
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Figure 4. Average cognitive workload ratings between tasks where automation prompts were 

followed (compliance) versus tasks where prompts were not followed. 

Reliance. 

Reliance was more strongly influenced by delegation (β = 0.309, SE = 0.041, t(267) = 

7.545, p < .001) than compliance (β = 0.193, SE = 0.052, t(261) = 3.744, p < .001). These results 

suggest that user-initiated automation engagement (delegation) produces greater sustained 

automation use than system-prompted engagement (compliance). 

Summary 

Automation use enhanced performance but did not alleviate perceived workload. 

Individual differences such as age and flight hours were not predictive of outcomes, though 

participants reporting moderate video game experience performed better than those with little or 

no gaming experience (an effect that should be interpreted cautiously given uneven group sizes). 

Neither automation reliability nor task load condition influenced automation use, indicating that 

engagement with automation was stable across these manipulations. 

Trait trust in automation (APTQ) was positively associated with state trust ratings (TIA 

Checklist), but neither trait nor state trust measures (nor self-reported prior automation use) 

predicted behavioral reliance. Instead, behavioral trust outcomes were shaped by task and 

workload demands. Delegation (user-initiated automation use) occurred more frequently in 

dynamic tasks such as resource management and tracking, while compliance (prompted 

automation use) increased with higher cognitive workload regardless of task type. Moreover, 

delegation exerted a stronger influence on sustained reliance than compliance, underscoring the 

importance of user agency in shaping automation use patterns. 
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Discussion 

The present study examined how TIA relates to operator performance, workload, and 

automation use behaviors in a simulated aviation multitasking environment. Analyses focused on 

five domains: task performance and workload, individual differences, automation reliability and 

task load conditions, relationships among trust measures, and behavioral trust outcomes 

(reliance, delegation, and compliance). Overall, findings highlight a disconnect between self-

reported measures of trust and actual operator behavior, underscoring the importance of 

situational and task-based factors in shaping automation use. 

Reliance on automation significantly improved task performance, reinforcing the 

established finding that well-designed automation can enhance objective performance outcomes 

in complex environments (e.g., Parasuraman et al., 2008; Sato et al., 2020). However, 

automation use did not reduce subjective workload, suggesting that aviators continued to monitor 

automation even when it performed reliably. This discrepancy between objective task relief and 

subjective experience aligns with prior research on vigilance and “out-of-the-loop” phenomena, 

which indicate that operators may not perceive automation as reducing cognitive demands 

because oversight responsibilities remain (Krausman et al., 2022; Lu & Sarter, 2019). These 

findings suggest that while automation may free attentional resources, it does not necessarily 

make the task feel easier to the operator, which is a critical distinction for aviation contexts 

where workload management is essential.  

Neither age nor flight hours predicted performance outcomes, indicating that aviation 

experience alone does not shape automation use patterns in this context. However, moderate 

video game experience (5-15 hours per week) was associated with significantly better 

multitasking performance relative to participants with little or no gaming experience. Although 

weakened by uneven group sizes within the sample, this result tentatively supports prior 

evidence that action video game play may enhance attentional control, visual-motor 

coordination, and task-switching ability (Green & Bavelier, 2003; Dye et al., 2009; Alzahabi & 

Becker, 2013). Interestingly, this effect did not extend to heavy gamers, who did not differ 

significantly from other groups. Given the very small subgroup sizes, these findings should be 

interpreted with caution, though they suggest that moderate levels of gaming may provide 

transferable cognitive benefits without introducing potential downsides of heavy gaming (e.g., 

fatigue or desensitization).  

Automation reliability (70-percent vs. 90-percent) and task load condition (easy-to-hard 

vs. hard-to-easy orderings) did not significantly predict reliance. This suggests that within the 

relatively high reliability ranges tested, aviators engaged automation at similar rates regardless of 

small differences in accuracy. Prior studies have found that larger manipulations of reliability 

(particularly those involving low or variable reliability) are more likely to affect operator 

reliance and trust (Dzindolet et al., 2003; Wickens & Dixon, 2007). The lack of sensitivity to 

moderate reliability differences in this study may indicate that aviators treated both 70-percent 

and 90-percent as “good enough” for offloading in multitasking environments. 

The study revealed a consistent link between trait trust (APTQ) and state trust (TIA 

Checklist), echoing prior work showing that dispositional trust tendencies influence situational 

trust ratings (Hoff & Bashir, 2015; Lee & See, 2004). However, neither trait nor state trust 
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predicted actual automation use behaviors (reliance, delegation, or compliance). This gap 

between self-reported beliefs and observed behaviors reflects a broader attitude-behavior 

inconsistency well-documented in social psychology (Ajzen et al., 2018; Armitage & Conner, 

2005). For TIA research, this finding is critical: Relying solely on questionnaires risks 

misrepresenting operator trust levels, especially in dynamic, high-load environments where 

situational risk and task demands may override individual predispositions. 

Behavioral measures of TIA revealed that contextual factors, not self-reported trust, 

drove automation use. Task type significantly predicted delegation, with operators more likely to 

self-engage automation in dynamic tasks such as resource management and tracking. These tasks 

require continuous monitoring and dynamic resource allocation, making them natural candidates 

for offloading. This pattern is consistent with ecological models of trust, which emphasize 

context-dependent trust behaviors shaped by task demands (Drnec et al., 2016). In contrast, 

compliance was driven by workload rather than task type. Aviators were more likely to accept 

automation prompts under high cognitive load conditions, reflecting a pragmatic strategy to 

manage limited attentional resources. This aligns with theories of decision-making under load, 

where individuals adopt simplified strategies or accept external guidance to cope with high task 

demands (Parasuraman & Riley, 1997). 

When it came to sustained automation use over the course of a task, delegation had a 

stronger impact on sustained reliance than compliance. When operators chose to engage 

automation proactively, they were more likely to leave it engaged for longer durations compared 

to when automation was activated in response to system prompts. This suggests that operator 

agency plays a critical role in shaping automation use. Prior research in human-machine teaming 

has emphasized the importance of perceived control in fostering trust and sustained engagement 

(de Visser et al., 2019). Designing systems that preserve operator autonomy while providing 

well-calibrated prompts may therefore optimize both performance and reliance outcomes. 

The study has several limitations. The sample size was small (N = 17), with uneven 

subgroup distributions for individual difference variables such as video game experience. The 

reliability manipulation covered a narrow range (70-percent vs. 90-percent), which may not 

generalize to scenarios involving highly unreliable or adaptive automation. Although 

physiological data (ECG, pupillometry) were collected, they were not analyzed in this report, 

limiting triangulation of trust and workload measures. Finally, the MATB-II is a validated 

multitasking simulation but does not fully replicate the operational complexity of real-world 

aviation environments. 

Future research should examine broader ranges of automation reliability and task 

difficulty to better understand thresholds at which operators modulate reliance. Improved 

workload measures (including physiological indicators) may provide richer insight into how trust 

and workload interact. Larger and more diverse samples of aviators are needed to validate 

individual difference effects, including potential transfer benefits from video gaming. Finally, 

future studies should explore system designs that support operator agency while leveraging 

prompts to encourage timely automation use, with an emphasis on developing trust measures that 

capture behavior rather than belief. 
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Conclusion 

This study demonstrates that while automation reliably improves performance, its 

influence on workload and trust is more complex. Self-reported trust measures were poor 

predictors of actual automation use, highlighting a belief-behavior gap with direct implications 

for the design of human-machine teams. Instead, task demands, workload, and operator agency 

were the strongest predictors of automation engagement and use patterns. These findings 

emphasize the need to move beyond questionnaire-based trust assessments toward behavioral 

and context-sensitive measures that more accurately capture how operators interact with 

automated systems in dynamic environments. 
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