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Summary 

Military aviation increasingly depends on automation to manage complex missions, yet 

static or pilot-initiated systems risk misuse, disuse, or over-reliance. Adaptive automation offers 

a potential solution by dynamically adjusting autonomy in response to operator state. This study 

examined two foundational design features, system transparency (transparent vs. opaque displays 

of automation state/rationale) and handoff method (voluntary vs. forced activation), to assess 

their effects on pilot cognitive workload (CWL), situational awareness (SA), and trust in 

automation. 

Twenty-four rated Army aviators performed four sessions of the U.S. Army Aeromedical 

Research Laboratory (USAARL) Multi-Attribute Task Battery (MATB) augmented with an 

adaptive automation controller driven by workload modeling. A within-subjects 2 × 2 design 

crossed transparency and handoff manipulations. Multimodal outcomes were collected, including 

subjective workload ratings, behavioral performance, physiological measures 

(electrocardiogram, pupillometry, eye tracking), and validated SA (Situation Awareness Global 

Assessment Tool, Situational Awareness Rating Technique, visual entropy metrics) and trust 

(Trust of Automation Systems Test, reliance, dwell metrics) assessments. 

Results revealed a differentiated pattern across constructs. Transparency was the 

dominant driver of workload, but in the opposite direction of the initial hypothesis; transparent 

displays increased CWL (p = .002, η² = .35), degrading multitasking efficiency and system 

monitoring. A significant transparency × handoff interaction also emerged (p = .006, η² = .29). 

For SA, both factors mattered; transparent conditions shaped scanning strategies but opaque 

displays produced higher comprehension and projection (p = .005, η² = .29), while voluntary 

handoffs strongly preserved comprehension across transitions (p < .001, η² = .58). Their 

interaction was significant (p = .012, η² = .24), with opaque-voluntary yielding the most 

favorable SA profile. Trust was governed primarily by handoff method (p = .002, η² = .34); 

voluntary handoffs improved reliance calibration and reduced over-monitoring while a task was 

automated whereas transparency alone did not increase trust (p = .098). Discriminant analyses 

corroborated these patterns (e.g., ~97% transparency classification for CWL; ~80–83% for SA 

transparency/handoff; ~74% for trust handoff). 

Together, the results highlight a central design principle: Transparency influences 

cognitive workload, voluntariness governs trust calibration, and SA is optimized when display 

mode and handoff method are aligned with optimal configurations. At the condition level, 

opaque-voluntary produced the best overall operator state (lower workload, stronger SA, higher 

trust), whereas transparent-forced produced the poorest outcomes. These findings provide 

concrete guidance for adaptive automation in high-demand Army aviation: Default to opaque 

displays with voluntary, autonomy-by-consent handoffs, and deploy transparency 

selectively/phase-specifically or on demand to avoid workload penalties while preserving 

awareness and trust. 
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Introduction 

Few domains have embraced automation as rapidly and pervasively as aviation. From the 

earliest decades of flight, system designers and operators recognized that the cognitive demands 

of flying could quickly exceed human limits. This recognition fueled a continuous push to embed 

automated processes wherever they could provide relief, precision, and consistency. Over time, 

automation permeated virtually every corner of aviation; manufacturing lines leveraged robotic 

assembly (Peck, 1959), recordkeeping systems shifted to digital automation to streamline 

logistics (Zimmerman et al., 1964), and even air traffic control adopted automated conflict-

detection aids (Hink, 1974; Couluris et al., 1978). Each of these advances reflected a shared 

logic; by removing some portion of human burden, automation could reduce errors, extend 

capability, and enhance safety. 

This orientation toward automation has only accelerated in the military sector. The 2022 

milestone flight of a fully autonomous UH-60 Black Hawk helicopter was more than just a 

technological demonstration, it represented a glimpse of the near-future operator role (Lockheed 

Martin, 2022). Rather than being stick-and-rudder pilots, pilots are increasingly positioned as 

supervisory controllers of complex, semi-autonomous systems. Such a shift brings both 

opportunity and tension; operators may be freed from micromanagement, but they also risk being 

distanced from the system’s underlying state and deprived of engagement. As Black Hawk 

development shows, supervisory control is not speculative; it is already here. The question is no 

longer whether automation should be integrated but how the human and machine should share 

control. 

The rationale for such developments is longstanding. Warren (1956) observed nearly 

seventy years ago that the demands of piloting could routinely overwhelm capacity, particularly 

under high workload phases such as takeoff, landing, and combat maneuvering. Since then, those 

demands have only grown; modern military aviators must integrate weapons management, 

cooperative teaming with unmanned systems, communications, and navigation, all while 

maintaining continuous vigilance over a dynamic environment. The result is a workload 

environment in which human limits are routinely tested, if not exceeded. 

Yet the paradox of automation is equally as old. As Thackray (1980) and de Waard 

(1996) noted, when automation relieves too much demand, operators can drift into underload, 

boredom, and lapses in vigilance. Excessive automation reliance may also degrade pilot skills 

through lack of engaged practice. The accident record confirms this. A widely cited review by 

Kayes and Yoon (2022) shows that cognitive offloading to automation has contributed to both 

systemic safety issues and specific aviation mishaps. Perhaps most striking is the counterfactual: 

the Apollo 11 landing in 1969, where astronaut Neil Armstrong’s manual override of the 

automated descent system averted what could have been a catastrophic crash (David, 2019). 

Here automation provided invaluable support, but human intervention was still decisive. Such 

anecdotes underscore the paradox — automation can save lives, but only when designed in a way 

that balances relief with engagement. 

This double-edged legacy frames the central problem, automation can extend human 

capacity, but it can also reconfigure the cognitive ecology of the cockpit in ways that introduce 

new vulnerabilities. Parasuraman and Riley (1997) famously characterized this problem as one 
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of “use, misuse, and disuse.” Sheridan and Parasuraman (2005) elaborated that supervisory 

control environments are particularly fraught, as operators must allocate attention between 

system monitoring and their own direct tasks, often without clear guidance about how authority 

should be shared. This tension drives the present focus, if automation is inevitable, then the 

challenge is not whether to automate but how to design the transitions of control so that optimal 

workload levels, awareness, and trust are preserved. 

The Adaptive Automation Problem 

The rise of adaptive automation has been one of the most promising responses to this 

challenge. Instead of setting automation levels statically, adaptive systems can adjust task 

allocation dynamically based on the operator’s predicted cognitive state. The conceptual 

framework is straightforward: 

1. Monitoring. Physiological signals (e.g., heart rate variability, pupil diameter, 

electroencephalogram frequency bands), behavioral cues (e.g., gaze scan patterns, 

affective speech analyses), and contextual cues (e.g., task demand, environmental phase 

of flight, operation within performance envelopes) are continuously observed. 

2. Estimation. These signals are transformed into interpretable features known to change 

with cognitive states and fed into models that estimate operator states such as workload, 

fatigue, or vigilance. 

3. Adaptation. When estimates exceed or approach thresholds (e.g., overload, underload), 

automation is engaged or disengaged to bring the operator back into a target zone that 

denotes an optimal arousal-performance balance. 

This loop promises a way to keep operators “in the sweet spot,” engaged enough to 

sustain vigilance but supported enough to avoid overload. In theory, such a system could prevent 

both catastrophic errors from task saturation and subtle degradations from underload. 

Decades of work reveal that building such systems is far easier in principle than in 

practice. Real-time physiological monitoring is noisy, individualized, and context-dependent. 

Models that classify cognitive states often struggle to generalize across operators or 

environments. Even when reliable signals exist, translating them into automation actions 

introduces another layer of uncertainty: When should it be automated? Which subtask should be 

automated? How should it be automated? How long should it be automated? The literature is 

rife with cautionary tales of adaptive automation that relieved one burden while inadvertently 

creating another, either by disengaging operators from critical monitoring or by re-engaging 

them abruptly without context (Ruff et al., 2002). 

For the current study, we developed a pseudo-adaptive automation system that allows us 

to bypass the current technically infeasible portions of the adaptive automation problem (e.g., 

translating from raw and noisy physiological signals to actionable output) and get to the heart of 

the when, which, how, and how long questions plaguing the field of automation. We have 

tackled this challenge by modifying a standard low-fidelity aviation software platform, the U.S. 

Army Aeromedical Research Laboratory (USAARL) Multi-Attribute Task Battery (MATB; see 

Vogl et al. [2024b] for further details on the software), to include a simulated adaptive 
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automation system based on computational task analysis methods. To do this, we integrated the 

USAARL MATB with the Improved Performance Research Integration Tool (IMPRINT; see 

Bommer et al. [2025] for more details). IMPRINT, originally developed by the U.S. Army 

Research Laboratory and Micro Analysis & Design, models cognitive workload by quantifying 

interference across simultaneous task demands (Buck-Gengler et al., 2012). Within the USAARL 

MATB, all possible combinations of subtasks were modeled (192 in total) to produce workload 

scores that can be assigned in real time during simulation. This allows the system to display 

workload over the preceding 10 seconds and project workload 5 seconds into the future, based on 

known task states in the scenario file. In effect, the MATB uses IMPRINT as a stand-in for 

physiological monitoring, creating a simulated adaptive automation environment. 

The resulting logic is both technical and oddly animate. By setting thresholds for 

overload and underload, the system can dynamically automate or revoke subtasks to bring 

workload back into a “comfort zone.” Crucially, these choices are not random; the algorithm 

selects the subtask predicted to yield the largest workload benefit in that context. This process 

gives the system a compelling quasi-intentional quality, as though the automation were actively 

“choosing” its actions. In practice, and with apologies to the author Mary Shelley, it evokes 

something akin to Frankenstein’s monster, stitched together from models and thresholds, not 

truly alive but moving and adapting in ways that suggest autonomy. While this remains a 

simulation rather than a true physiology-driven system, it allows researchers the ability to start 

answering questions related to automation handoffs that may otherwise not be presently 

approachable with the current state-of-the-art of physiologically driven adaptive automation 

pipelines. In this study, we employ the use of our MATB’s simulated adaptive automation 

system to consider design principles that may help shape the advancement of human-automation 

interactions, especially regarding control transitions. 

Why Transitions Matter 

Even if workload estimation were solved, one problem remains particularly intractable, 

control transitions. Early frameworks such as Parasuraman et al.’s (2000) taxonomy of levels of 

automation and Endsley’s (1995) three-level model of situational awareness warned that abrupt 

shifts of authority can undermine performance, particularly if operators are deprived of context. 

Empirical studies since then have reinforced the point. Molloy and Parasuraman (1992) showed 

that forced automation takeovers degraded awareness and slowed responses. Ruff et al. (2002) 

demonstrated that abrupt supervisory control transfers disrupted communication and 

coordination. Chen and Barnes (2014) found that in unmanned aerial vehicle operations, forced 

handoffs increased workload and eroded trust. The recurring message is simple; transitions are 

not neutral events. They reconfigure attention, awareness, and relational dynamics, often at the 

very moment when performance is most fragile. 

Two factors dominate these discussions, transparency and handoff method. 

Transparency refers to how much the automation reveals about its logic, state, and intentions. 

Handoff method refers to whether control transfers are voluntary (initiated or confirmed by the 

operator) or forced (initiated by the system), or scaled somewhere in between. Together, these 

factors determine how operators experience transitions: Do they understand why the system is 

acting, and do they retain agency over whether the action occurs? 
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The literature leans heavily toward the view that more transparency and more 

voluntariness are better. Sheridan et al. (1978) argued that automation must not be a “black box.” 

Billings (1996) framed transparency as essential to human-centered design. Endsley (1995) 

showed that transparency supports all three levels of SA, perception, comprehension, and 

projection. Parasuraman and Riley (1997) warned that forced handoffs risk both misuse and 

disuse by eroding trust. More recently, reviews such as Vogl et al. (2024a) have reaffirmed these 

themes, highlighting transparency and handoff as the two most consistent recommendations 

across three decades of adaptive automation research. 

And yet, the picture may not be so one-sided. As supervisory control becomes the norm, 

several scholars have warned that less cluttered displays and more decisive automation actions 

might actually be beneficial, particularly under high workload. While transparency can improve 

comprehension, it also introduces another panel to scan, another channel to process, and 

additional mental workload, raising the risk that the cost of added visibility may outweigh its 

benefits (Van de Merwe et al., 2024; Gegoff et al., 2024). Similarly, although voluntary handoffs 

preserve operator agency, they also impose a decision burden, requiring the operator to evaluate 

prompts and take manual action under competing demands. In time-critical contexts, forced 

handoffs may therefore reduce cognitive load by removing that decision point and freeing the 

operator to focus on primary tasks (Akash et al., 2020; Villani et al., 2018). 

Together, these findings suggest that the design of transitions cannot be reduced to a 

binary judgment of “more is better” for either transparency or voluntariness. Instead, the 

effectiveness of these features appears to be deeply context-dependent, shaped by the cognitive 

demands of the task, the timing of transitions, and the operator’s mental model of system 

behavior. This recognition sets the stage for a closer examination of transparency and handoff 

method not as isolated design principles, but as dynamic levers that interact with workload, 

situational awareness, and trust in complex ways. The following sections consider each in turn, 

beginning with transparency, tracing its theoretical foundations, empirical evidence, and 

implications for adaptive automation. 

Transparency in Adaptive Automation 

Transparency has been described as the lifeblood of human-automation teaming. From 

Sheridan et al. (1978) early insistence that operators must “see inside” system logic, to Billings’ 

(1996) framing of human-centered automation, the principle has remained remarkably stable, 

operators need visibility into automation’s reasoning and intentions if they are to work 

effectively alongside it. 

The operational justification is straightforward. Aviation tasks are inherently 

multichannel and time sensitive. If operators are left uncertain about why an automated system 

acted, or about what it will do next, they must divert scarce attentional resources to reconstruct 

system state. Transparency relieves this demand by making the automation’s logic visible, 

narrowing the range of possibilities the operator must entertain, and allowing attention to be 

directed where it is most needed. 
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In terms of cognitive workload (CWL), transparency can be thought of as a regulator. By 

revealing what the system is monitoring and what thresholds it is applying, transparency reduces 

the uncertainty that drives inefficient scanning and redundant monitoring. Rather than 

continuously checking whether automation is functioning, the operator can offload some 

monitoring to the system itself, while retaining confidence in its criteria. Under Multiple 

Resource Theory (Wickens, 2002), this reduction in cognitive resource interference directly 

lightens workload. The Region Model (de Waard, 1996) reinforces this idea; by lowering the 

background cost of uncertainty, transparency helps keep workload within the optimal 

performance band rather than drifting into overload or underload (see Figure 1). 

 
 

Figure 1. The Region Model (left; adapted from de Waard, 1996; Young et al., 2015). 

For SA, transparency provides scaffolding. Endsley’s (1995) three-level model 

emphasizes perception, comprehension, and projection. Transparency contributes at all three 

levels, it exposes perceptual cues about current state, clarifies the rationale for why those cues 

matter, and makes system intentions explicit to support projection. In supervisory environments, 

where operators may not be hands-on with controls, projection is particularly vulnerable. 

Transparency helps maintain forward-looking awareness even when the operator’s primary role 

is monitoring rather than manual control. 

The link between transparency and trust is more contested. Transparency has often been 

proposed as a calibration mechanism, allowing operators to align their reliance with system 

capability (Lyons, 2013). In principle, visibility into system logic should prevent overtrust 

(delegating when the system is weak) and undertrust (withholding reliance when it is strong). 

But the literature has shown mixed results. Too much transparency can overwhelm, confuse, or 

frustrate operators. Wiener (1989) warned that information overload can be just as damaging as 

opacity. Transparency is valuable not as an unbounded stream but as tailored, comprehensible, 

and actionable cues. 
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Handoff Methods in Adaptive Automation 

If transparency determines what the operator knows about automation, handoff 

determines what the operator controls. Handoff refers to the manner in which authority is 

transferred between human and system. The contrast is sharp. Voluntary handoffs occur when 

the system recommends an action but leaves the decision to the operator. Forced handoffs occur 

when the system acts unilaterally. 

The implications for cognitive workload are intuitive but not always straightforward. 

Voluntary handoffs preserve operator agency but impose an additional decision cost. Each 

prompt requires attention, evaluation, and response. In a busy multitasking environment, these 

micro-decisions can accumulate. Forced handoffs, by contrast, relieve this decision burden. The 

operator can remain focused on current tasks while the system reallocates control in the 

background. Yet this very relief can also create disruption. When control shifts without 

preparation, workload can spike as the operator scrambles to catch up. Whether voluntary 

handoffs genuinely reduce workload, or whether forced handoffs can be protective of workload 

by removing decision load, remains an empirical question. 

For SA, the trade-offs are sharper. Endsley (1995) emphasized that awareness is most 

vulnerable at points of transition, when mental models must be updated. Voluntary handoffs 

allow operators to anticipate transitions and align their mental models in advance. Forced 

handoffs risk leaving operators disoriented, struggling to reacquire comprehension of system 

state. Ruff et al. (2002) showed that abrupt supervisory control transfers degraded situational 

awareness in communication-heavy tasks. In this sense, voluntariness preserves continuity. Yet 

here too a nuance exists, in some cases, forced handoffs may act as a safeguard, ensuring that 

automation engages when the operator is inattentive or overloaded. Whether the preservation of 

comprehension outweighs the potential safety benefits is precisely the kind of tension that must 

be examined systematically. 

For trust, handoff is arguably the decisive factor. Trust is fundamentally relational; it 

reflects whether the operator perceives the automation as a dependable teammate (Lee & See, 

2004). Forced handoffs can be interpreted as automation overreach, undermining perceptions of 

controllability and damaging trust. Voluntary handoffs, by contrast, affirm the operator’s role as 

decision-maker, reinforcing perceptions of agency and aligning trust with reliability. Chen and 

Barnes (2014) found that voluntary handoffs enhanced trust calibration in unmanned aerial 

vehicle control, while forced handoffs eroded reliance even when system performance was high. 

Still, even here there are counterpoints. Casner and Schooler (2014) argued that forced 

handoffs can be vital safety nets, particularly in cases of incapacitation or delayed operator 

response. From this perspective, voluntariness is not universally superior; its advantages must be 

weighed against the system’s obligation to act when human performance falters. 
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Gaps and Rationale for the Present Study 

Despite decades of research, guidance on transition design remains underdeveloped. Most 

studies have focused on when automation should act, for example, triggering based on workload 

thresholds or system failures. Far fewer studies have examined how automation should act with 

multiple facets of design principles, specifically, how much context it should provide 

(transparency) and whether control should be confirmed or imposed (handoff). Vogl et al. 

(2024a) emphasized this gap in their review, noting that while transparency and handoff are the 

most frequently recommended design principles, systematic tests of these factors within the same 

study and together are sparse. 

The present study was designed to fill this gap by systematically manipulating 

automation transparency (transparent versus [vs.] opaque) and handoff method (voluntary vs. 

forced) within a low-fidelity simulation environment. Using the USAARL MATB augmented 

with IMPRINT workload modeling, we were able to precisely control task demands and 

automation behavior while engaging rated aviators in complex supervisory control tasks that 

approximate operational aviation contexts. Outcomes were assessed across three core constructs, 

CWL, SA, and trust in automation, using a multimodal measurement strategy that combined 

subjective scales, physiological indices, and behavioral performance. This comprehensive 

approach ensured that each condition could be evaluated not only in isolation but also in terms of 

how transparency and handoff jointly shaped the dynamics of human-automation teaming. 

Critically, this multidimensional framework reflects the interdependence of CWL, SA, and trust 

in automation; reducing workload does not automatically preserve awareness, and maintaining 

awareness does not necessarily yield calibrated trust. By integrating these constructs, the present 

study provides a more holistic evaluation of how transition design features influence operator 

state and system performance. 

From this framework, six hypotheses were developed. The first three hypotheses concern 

the effect of transparency, in line with the longstanding claims that transparent displays reduce 

uncertainty, narrow attentional demands, and support trust calibration (Wickens, 2002; Lyons, 

2013). 

• Hypothesis 1: Automation displays that provide more context of the automated state   

(i.e., transparent) will yield lower levels of CWL relative to less verbose (i.e., opaque) 

automated systems. 

• Hypothesis 2: Automation displays that provide more context of the automated state   

(i.e., transparent) will yield higher levels of SA relative to less verbose (i.e., opaque) 

automated systems. 

• Hypothesis 3: Automation displays that provide more context of the automation state 

decisions (i.e., transparent) will yield higher levels of trust in the automated system 

relative to silent (i.e., opaque) automated systems. 
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The second set of hypotheses state that voluntary transitions preserve operator agency, 

enhance comprehension, and improve trust calibration by avoiding perceptions of automation 

dominance (Ruff et al., 2002; Chen & Barnes, 2014). 

• Hypothesis 4: Automation systems that suggest manual activation of automation         

(i.e., voluntary handoff) will yield lower levels of CWL relative to automation systems 

that automatically take control of a subtask (i.e., forced handoff). 

• Hypothesis 5: Automation systems that suggest manual activation of automation         

(i.e., voluntary handoff) will yield higher levels of SA relative to automation systems that 

automatically take control of a subtask (i.e., forced handoff). 

• Hypothesis 6: Automation systems that suggest manual activation of automation         

(i.e., voluntary handoff) will yield higher levels of trust in automation relative to 

automation systems that automatically take control of a subtask (i.e., forced handoff). 

In summary, the present research investigates how transparency and handoff method 

shape the three pillars of human-automation teaming assessment. By systematically testing these 

factors in a controlled aviation simulation with U.S. Army rated aviators, the study provides 

empirical evidence to inform the design of next-generation adaptive automation systems. The 

hypotheses are structured to test both the main effects of transparency and handoff and explore 

their combined consequences (as little work had been done to explore their interaction), 

producing findings that can be directly mapped to practical guidelines for system designers. 

Methods 

The study was reviewed and approved by the U.S. Army Medical Research and 

Development Command Institutional Review Board prior to execution. This study employed a 

within-subjects design across two factors each with two levels. A 2 (handoff method: voluntary 

vs. forced) by 2 (transparency level: transparent vs. opaque) study design was utilized to address 

the research objectives.  

Participants 

A total of 24 rated aviators (male = 23, female = 1; mage = 39.46 [standard deviation    

[SD] = 7.11]) participated in this study. All participants self-reported being in good health, free 

from medications that could induce drowsiness, and abstinent from alcohol or sedatives for 24 

hours, caffeine for 16 hours, and nicotine for 2 hours prior to data collection. Recruitment 

occurred in the Fort Rucker area through word-of-mouth, flyers, social media, and e-mail 

communications. Participants provided written informed consent prior to study enrollment. Upon 

completion of the study, participants who were in a “leave” status received $200 in gift cards as 

compensation.  

Participants had an average career flight time of 2589.75 (SD = 1929.23) hours. 

Participants reported an average of 7.58 (SD = 0.84) hours of sleep the night before and the 

average Karolinska Sleepiness Scale score across all participants was 2.58 (SD = 1.10). All 

participants reported to be alert at the start of the study. All participants passed the required 
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training thresholds and finished the study with complete data sets. 

Materials 

USAARL MATB. 

The USAARL MATB was used as the experimental platform. The USAARL MATB is 

an aviation-like simulation environment consisting of four concurrently performed subtasks 

designed to mimic activities commonly performed in a cockpit. Figure 2 displays the graphical 

user interface (GUI) of the simulation. A full description of the software and paradigm is 

provided in Vogl et al. (2024b), with brief descriptions below. 

System monitoring (SYS) subtask. 

Participants completed a discrete visual vigilance task involving four lights, each mapped 

to a unique joystick button. When a light illuminated, the participant pressed the corresponding 

button to extinguish it before it timed out (5 seconds). Accuracy and reaction time were 

recorded, combined, and normalized to yield a SYS score for the subtask. 

Communications (COM) subtask. 

Participants monitored auditory channels for their callsign (e.g., “NASA 504”) and 

responded by adjusting radio, channel, and frequency settings to match the instructions they 

heard. Distractor messages directed at other callsigns were to be ignored. Accuracy and response 

time were recorded, combined, and normalized to yield a COM score for the subtask. 

Tracking (TRK) subtask. 

Participants performed a continuous compensatory tracking task, using a joystick to 

control a randomly moving circle and keep it aligned with a central target square. Deviations 

were recorded and normalized (against a deviation window of four units) to yield a TRK score 

for the subtask. 

Resource management (RM) subtask. 

Participants used a mouse to manage fuel levels across two primary tanks, maintaining 

them near a target fuel level of 2000 fuel units while they continuously drained throughout the 

simulation. Pumps with varying flow rates transferred fuel, while occasional pump shutoffs and 

failures (i.e., disabled the pump for 10 seconds) added dynamic decision demands. Fuel levels 

were continuously recorded, combined, and normalized (against a deviation window of 500 fuel 

units) to yield a RM score for the subtask. 
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Figure 2. The USAARL MATB graphical user interface (GUI). The four subtasks, the subjective 

workload prompt, and the transparent Virtual Offloading Guidance Logic (VOGL) system are 

displayed. 

Virtual Offloading Guidance Logic (VOGL) - USAARL MATB automation system. 

The VOGL system enables experimental manipulations of automation reliability, 

transparency, and handoff method. VOGL was designed to provide automation assistance across 

all four of the primary USAARL MATB subtasks, allowing for dynamic control and varied 

operator-system interactions to address research questions in the field of human-automation 

teaming. The VOGL system was enhanced from the standard system presented in Vogl et al. 

(2024), to address the needs of the current study. Here, a brief overview of the relevant updates 

will be provided. 

Reliability. 

Automation systems come with varying levels of reliability in terms of how well they can 

perform the task they were designed to automate. An automation system can likely achieve 

minimum thresholds of performance under ideal conditions, but reliability may deteriorate under 

real-world conditions. Within the VOGL automation system, we defined reliability as the subtask 

score that is achieved by the system when it is automated. Formulas and algorithms were 

integrated into the VOGL system to derive these scores in real-time and to give the illusion of 

variable reliability levels. For example, while under automation, the tracking task would drift 

less erratically as if under the control of the VOGL system, with some random but system-

deliberate drifts to maintain the appearance of active task performance while also controlling for 

the score that the automation system could achieve. The discrete tasks (SYS and COM) were 

more difficult to enable ‘real-time’ performance, so instead, negative feedback was incorporated 

to highlight incorrect responses made by the system (e.g., static would be played if the 

automation system ‘incorrectly’ put the wrong radio channel in). These updates made the 

automation feel more realistic, allowing the USAARL MATB program to bridge the gap from a 

simple desktop program to a more involved aviation simulation. 
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For the current study, reliability itself was not changed between conditions presented in 

the USAARL MATB program. Instead, static reliability was targeted at 80% for all subtasks 

across all conditions, with the exception of TRK which was targeted at 85%. While these 

reliability levels may appear low relative to our general understanding of what makes a good 

score (e.g., grade school percentages), they were specifically chosen to mimic the response 

profile similar to, if not slightly better than, a novice performer of the USAARL MATB task. 

This ensured that the automation system was perceived at known reliability levels for each 

participant consistently throughout the study and that it would not always be the best choice to 

automate everything all at once. Instead, these automation levels ensured a balance of human and 

automation performance that could be leveraged to achieve a high score in the program. 

Transparency. 

The VOGL system was designed to be able to change its transparency level, i.e., how 

much information it provides the operator regarding its decision-making process. Two 

transparency levels were tested. In the transparent condition, the operator would be provided an 

additional panel with information regarding the current experienced workload, the thresholds the 

system uses to determine when automation should be turned on or off, and the ability to alter 

how the automation system makes its decisions (to an extent). A depiction of the VOGL 

workload panel with the transparent automation window open is available in Figure 2. In the 

opaque conditions, the VOGL panel on the righthand side of the GUI is not visible, resulting in 

the only interface with the automation system being the switches in the lower left corner of the 

GUI. 

Handoff method. 

Two handoff methods were also utilized in the current study. In the voluntary handoff 

condition, the operator would be presented a suggestion to turn on automation for a specific 

subtask. This suggestion would occur when the tracked workload value (derived by IMPRINT 

scores) crossed the red-line threshold (e.g., see the Estimated Cognitive Workload plot in the 

upper right of Figure 2). The suggestion would be indicated by turning the corresponding 

automation switch to a red color (i.e., red to remove the task from their control responsibilities) 

in the lower left VOGL switch panel. In the case of a revocation suggestion (i.e., the workload 

value is below the green line indicating underload), the corresponding automation switch color 

would turn green (i.e., green to add the task to their control responsibility). These suggestions 

were then to be considered by the operator but the decision to automate or revoke was ultimately 

left to them. Conversely, in the forced condition, automation or revocation actions would be 

automatically applied, without any input from the operator. Additionally, the operator would 

have no control over automating any subtask or revoking control unless the system made the 

action itself. This would yield a dynamic passing back and forth of the subtask controls between 

the VOGL system and the operator without the operator having to make the decision. 
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Physiological devices. 

Two physiological devices were used to estimate cognitive workload and situational 

awareness changes during task performance. Standard operating procedures were followed for 

the use of each device in accordance with the device user manuals. Each of the recorded 

physiological measures were synchronized utilizing the open-source Lab Streaming Layer (LSL) 

protocol.  

Cardiac activity. 

The Polar H10 electrocardiogram (ECG) system was used to monitor cardiac activity 

during the USAARL MATB simulations. The Polar H10 consists of a single strap that is placed 

around the mid-point of the participant’s chest and a Bluetooth sensor module that samples ECG 

data at a rate of 130 Hertz (Hz). For the current study, the Polar H10 was remotely linked to the 

data collection computer. The ECG data were processed to derive metrics known to correlate 

with changes in cognitive workload. These metrics included heart rate (in beats per minute) and 

heart rate variability (i.e., low frequency - high frequency ratio). These metrics were derived as 

average values across each testing condition. 

Eye-tracking. 

The participants’ eye movement activity was recorded using the Gazepoint 3 High 

Definition (GP3 HD) eye-tracking system. The GP3 HD system is a remote video-based eye-

tracking system that was mounted securely under the monitor on which the USAARL MATB 

GUI was displayed. The GP3 HD eye tracker collected eye movement data to determine which 

subtask in the USAARL MATB the participant was looking at, as well as pupil diameter data. 

Eye-tracking data were collected at a sample rate of 150 Hz, with 0.5-1.0 degree of visual angle 

accuracy. The GP3 HD data were collected using both an LSL-synchronized approach and using 

the accompanying Gazepoint Analysis software for video playback.  

Eye-tracking data were processed to generate metrics aligned with CWL, SA, and trust in 

automation. Cognitive workload was assessed using pupil diameter, averaged across the left and 

right eye. Because increases in pupil diameter are positively associated with greater cognitive 

effort under luminance-controlled conditions, values were expressed as a percent change from 

baseline to enhance comparability across participants. Situational awareness was evaluated 

through the relative visual entropy across the monitor panel and within the regions of interest 

(ROIs) of the USAARL MATB interface, providing an index of attentional distribution. Finally, 

trust in automation was inferred from dwell time on subtasks under automated control. These 

values were reverse-coded, such that greater monitoring of automated subtasks reflected lower 

trust, indicating that operators felt the need to visually verify system behavior rather than 

delegate confidently. 

Subjective scales. 

A standard demographics survey and the Karolinska Sleepiness Scale (KSS) were 

administered prior to task engagement. The KSS is a widely validated, single-item measure in 

which participants rate their current level of sleepiness (Kaida et al., 2006). Scores on the KSS 

reflect momentary daytime sleepiness, with higher values indicating greater subjective 
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sleepiness. Several standardized questionnaires were also administered to assess perceived 

cognitive workload, situational awareness, and trust in the automation system used in the study. 

CWL scales. 

Instantaneous Self-Assessment (ISA) Scale. 

During the USAARL MATB simulation, operators were prompted every 30 seconds to 

provide a subjective workload rating on a 1–10 scale. Each prompt was signaled both visually, 

via a light on the GUI, and auditorily, via a 1000 Hz tone. Operators entered their responses 

using the on-screen sliding scale, selecting the desired value with the mouse. The software 

automatically recorded both the chosen rating and the associated response time. If no response 

was provided within 10 seconds, the prompt timed out and the omission was logged. Prior to the 

experiment, operators were introduced to the ISA scale during training to ensure familiarity with 

the 1–10 anchors. This preparation minimized the need for external reference during task 

performance, thereby reducing intrusiveness of the measure. 

NASA-Task Load Index (NASA-TLX). 

The NASA-TLX is a widely used multidimensional questionnaire designed to assess 

perceived workload across six domains: mental demand, physical demand, temporal demand, 

performance, effort, and frustration (Hart & Staveland, 1988). Each dimension is rated on a 100-

point scale, and the scores are averaged to yield a composite workload index in addition to the 

six individual subscale scores. In the present study, the NASA-TLX was administered following 

each block of the USAARL MATB simulation to capture participants’ retrospective assessment 

of task demand. Importantly, the NASA-TLX is not suitable for administration during task 

performance, as the multi-item scale is time-intensive and would substantially disrupt ongoing 

performance if embedded within the task. Thus, post-task administration allowed for 

comprehensive workload assessment without interfering with operators’ real-time task execution. 

SA scales. 

Situation Awareness Global Assessment Tool. 

The Situation Awareness Global Assessment Technique (SAGAT) was used to provide 

an objective assessment of operator situational awareness during task performance (Endsley, 

1988). Unlike many situational awareness measures that are administered post-task, where 

responses are vulnerable to recall errors and bias, the SAGAT was embedded directly within the 

USAARL MATB simulation. During each trial, the simulation was randomly frozen at pre-

specified intervals, and operators were presented with queries targeting their current awareness 

of the task environment. These queries spanned all three levels of Endsley’s model of situational 

awareness, perception, comprehension, and projection. 

For example, perception-level queries asked operators to identify immediate system 

states such as, “What is your current system monitoring light configuration?” Comprehension-

level questions probed understanding of the broader context, such as, “Which tasks were 

automated at any point over the previous round?” Projection-level items required operators to 

anticipate future events, such as, “How many seconds until the next subjective workload 
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prompt?” Operators responded using a mouse to select or enter answers via the simulation 

interface. 

Responses were automatically recorded and scored against the actual system state at the 

time of the query, yielding objective indices of situational awareness. Scoring was normalized 

between 0 and 1, either as a percent correct (for categorical queries) or percent deviation from 

the true value relative to task performance window thresholds (for continuous metrics). By 

pausing the simulation and querying awareness in real-time, the SAGAT provided a direct, 

unbiased measure of perception, comprehension, and projection, ensuring that all three levels of 

situational awareness were captured during task performance. 

Situational Awareness Rating Technique. 

The Situational Awareness Rating Technique (SART) is a self-assessment technique 

designed to measure an operator’s level of SA (Taylor, 2017). To capture key features of 

situational awareness, the items were generated by presenting scenarios to aviators and having 

them identify features of situational awareness that were pertinent to two of the three scenarios. 

The three primary factors are: 1) demands on attentional resources, 2) the supply of attentional 

resources, and 3) the operator’s understanding of the situation. These factors correspond to 

perception, comprehension, and projection, respectively. In this study, the 10-item SART using a 

7-point Likert scale was administered upon completion of each testing condition. 

Trust in Automation Scales. 

Adapted Propensity to Trust in Technology Questionnaire. 

The Adapted Propensity to Trust in Technology Questionnaire (APTQ) was used to 

measure each participant’s baseline tendency to trust automation (Jessup et al., 2019). The APTQ 

is a six-item instrument developed specifically to assess propensity to trust automated systems, 

building on earlier, more general trust-in-technology measures. It has demonstrated strong 

reliability and predictive validity for both perceived trustworthiness of automation and 

behavioral reliance on it (Jessup et al., 2019). Participants rated their agreement with six 

statements about automation (e.g., “Generally, I trust automated systems”) on a 5-point Likert 

scale ranging from 1 (strongly disagree) to 5 (strongly agree). The APTQ was administered prior 

to any interaction with the USAARL MATB tasks or automation features to capture dispositional 

biases. These scores were then used as a covariate by regressing trust outcome measures onto 

APTQ scores, thereby residualizing dispositional trust and isolating state-based trust effects 

attributable to the experimental manipulations. 

Trust of Automated Systems Test. 

The Trust of Automated Systems Test (TOAST) was used as a 9-item scale to assess trust 

in automation (Wojton et al., 2020). Each item was rated on a 7-point Likert scale. The TOAST 

was originally developed to capture three theorized foundations of trust identified in earlier 

literature—purpose, performance, and process (Lee & Moray, 1994; Lee & See, 2004). 

However, confirmatory factor analysis supported a two-factor solution, resulting in subscales for 

system performance and system understanding. The scale has demonstrated strong concurrent 

validity with existing trust measures and has been validated across both military and civilian 
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contexts (Wojton et al., 2020). 

Procedure 

Participants completed informed consent, eligibility screening, and baseline surveys 

(demographics, APTQ, Karolinska Sleepiness Scale). Then, the participant was instrumented 

with the Polar H10 device and the GP3 eye-tracking system, following standard operating 

procedures. Physiological data were recorded throughout the remainder of the task (i.e., during 

baseline, training, and testing condition blocks). A 5-minute resting baseline was administered, 

split between opaque (first 2.5 minutes) and transparent (last 2.5 minutes) MATB conditions to 

control for luminance differences.  

Training included instructing the participant on the USAARL MATB subtasks, subjective 

workload prompts, and automation procedures. Participants had to achieve ≥ 60% on all subtasks 

before proceeding, with up to three training failures permitted before being removed from the 

study. Next, participants were trained on VOGL automation displays and handoff mechanisms, 

followed by four short practice runs (one per condition).  

The experimental phase consisted of four counterbalanced 10-minute MATB blocks 

representing the 2 by 2 design (transparent vs. opaque by voluntary vs. forced, as seen in Table 

1). During task performance, the USAARL MATB would freeze, color the screen white, and 

present the SAGAT questions. Once the SAGAT questions were answered, the USAARL MATB 

GUI would appear, offer a count down, and allow the operator to proceed with the simulation. 

After each block, participants completed the NASA-TLX, TOAST, and SART. At study 

completion, participants were debriefed, compensated, and escorted from the USAARL facility. 

 

Table 1. Experimental Conditions by Transparency and Handoff Method Factors 

 Voluntary Handoff Forced Handoff 

Transparent Display 

VOGL panel visible 

+ 

automation suggestions 

VOGL panel visible  

+ 

forced automation activation 

Opaque Display 

VOGL panel not visible 

+ 

automation suggestions 

VOGL panel not visible 

+ 

forced automation activation 

Note. Conditions represent a 2 by 2 design crossing transparency (transparent vs. opaque) with 

handoff method (voluntary vs. forced). 

 

Data Quality and Statistical Analysis 

Prior to hypothesis testing, all physiological and performance data streams were 

inspected for quality and completeness. Raw ECG, pupillometry, and eye-tracking data were 

visually screened and algorithmically checked for artifacts (e.g., blink-related pupil spikes, 

ectopic heartbeats, or tracking dropouts). Segments with signal loss or artifact contamination 

were excluded using standard preprocessing routines, and remaining data were baseline-
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corrected relative to each participant’s pre-task resting period. Task performance metrics derived 

from the USAARL MATB were verified for consistency against system logs to ensure accuracy 

of automation state tagging and handoff events.  

To reduce dimensionality and limit Type I error inflation, metrics were grouped into three 

construct-specific sets aligned with the study hypotheses: CWL, situational awareness (SA), and 

trust in automation. Within each set, principal components analysis (PCA) was applied to 

identify latent dimensions and minimize redundancy prior to conducting omnibus tests. 

Multivariate analysis of variance (MANOVA) was used as the primary inferential 

framework, with transparency, handoff method, and their interaction treated as within-subjects 

factors. Pillai’s Trace was selected as the omnibus statistic due to its robustness against 

departures from multivariate normality and variance-covariance heterogeneity. Assumption 

checks included Mardia’s test of multivariate normality, Mahalanobis distance for multivariate 

outliers, and correlation matrices to screen for multicollinearity. 

For significant omnibus effects, linear discriminant analysis (LDA) was employed to 

derive discriminant functions and visualize separation among factor levels. Leave-one-subject-

out cross-validation (LOSO-CV) and receiver operating characteristic (ROC) area under the 

curve (AUC) were used to evaluate classification accuracy and generalizability. Univariate 

repeated-measures ANOVAs, corrected with the Benjamini-Hochberg false discovery rate (FDR) 

procedure, were then conducted as follow-ups to clarify the contribution of individual measures. 

Finally, trust-related outcome variables were residualized against baseline propensity to 

trust automation scores to isolate variance attributable to the experimental manipulations rather 

than trait-level predispositions. Together, these procedures ensured that subsequent results reflect 

reliable, well-calibrated estimates of how transparency and handoff manipulations influenced 

CWL, SA, and trust in automation. 

Results 

Measures 

The collected metrics were separated into three sets relative to the hypotheses put forth. 

The three groups included clusters of metrics known to change as a function of cognitive 

workload, situational awareness, and trust in automation to ensure accurate model development 

for each construct. Table 2 details the descriptive data for each group of metrics across the four 

conditions. Table 9 compiles the definitions of the multivariate functions derived from these 

metric sets for quick reference. 

The CWL metric set included a combination of subjective, physiological, and 

performance-based measures to capture workload from multiple perspectives. Subjective 

workload was assessed using the NASA-TLX composite score (averaged across six subscales) 

and the within task-prompted ISA scale. Physiological indices included pupil diameter and heart 

rate variability in the low-to-high frequency band ratio. Each physiological metric was baselined 

relative to the at-rest baseline recorded prior to the testing session. Task-based performance 

metrics included the MATB subtask scores (SYS, TRK, COM, RM), the IMPRINT model-

derived workload estimate (to provide an overall score of the average workload experienced 
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throughout the simulation), and a multitasking efficiency coefficient (all of which are standard 

output of the USAARL MATB platform). To maintain directional consistency across the set, 

metrics where higher raw values reflected improved performance were reverse scored, such that 

larger values always indicated greater workload. These included the multitasking efficiency 

coefficient and each MATB subtask score. This scoring approach ensured that all measures could 

be meaningfully integrated for the multivariate analyses, with higher scores uniformly 

representing higher cognitive workload. 

The SA metric set was designed to capture perceptual, cognitive, and attentional aspects 

of awareness using both direct probes and behavioral indices. Subjective measures included 

SAGAT-based perception, comprehension, and projection scores, along with the SART 

dimensions of demand, supply, and understanding. In addition, entropy-based eye-tracking 

metrics were incorporated, including relative entropy both in general across the visual space and 

within ROI, which reflect the consistency and distribution of attentional scanning. Behavioral 

efficiency was further indexed by mean revisit rates to the tracking and resource management 

subtasks. Because these tasks are high-bandwidth and event-driven, greater revisit frequencies 

were interpreted as reflecting better SA, indicating that operators were actively monitoring 

dynamic channels where rapid changes occur. As with other SA measures, higher values 

consistently represented improved situational awareness; thus, no reverse scoring was applied 

within this set. 
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Table 2. Descriptive Data from Each Condition Across Metric Sets: CWL, SA, and Trust 

Metric 

Opaque  

x  

Forced 

Opaque  

x 

Voluntary 

Transparent  

x 

Forced 

Transparent  

x 

Voluntary 

 Mean SD Mean SD Mean SD Mean SD 

CWL Metric Set         

  NASA-TLX 61.09 9.69 61.76 9.26 62.20 9.92 59.88 9.17 

  ISA Score 5.42 1.30 4.99 1.28 5.51 1.28 5.18 1.45 

  Pupil Diameter (% Δ) 10.03 8.79 8.49 7.77 5.42 8.02 5.87 9.63 

  ECG LF/HF (% Δ) -23.85 43.77 -13.58 52.96 -13.10 50.55 -15.13 49.95 

  Multitasking Coefficient* -0.62 0.12 -0.64 0.06 -0.76 0.11 -0.83 0.04 

  SYS Score* -63.78 5.93 -66.56 8.88 -67.62 6.28 -67.3 7.77 

  TRK Score* -79.02 4.31 -79.66 4.13 -79.30 4.08 -79.88 3.74 

  COM Score* -47.74 18.12 -61.69 18.31 -40.79 26.92 -76.68 22.17 

  RM Score* -77.48 11.84 -82.69 6.81 -77.67 11.54 -79.12 8.93 

  IMPRINT 22.90 1.17 24.66 8.32 22.48 1.64 26.02 8.48 

SA Metric Set         

  SAGAT: Perception 0.62 0.20 0.51 0.21 0.66 0.13 0.6 0.20 

  SAGAT: Comprehension 0.70 0.10 0.85 0.08 0.57 0.16 0.82 0.14 

  SAGAT: Projection 0.21 0.41 0.36 0.21 0.72 0.14 0.54 0.24 

  SART: Demand 5.18 0.79 5.11 0.81 5.35 0.78 5.19 0.83 

  SART: Supply 5.83 0.58 5.65 0.83 5.54 0.78 5.58 0.97 

  SART: Understanding 4.46 0.83 4.22 0.92 4.33 0.89 4.43 0.89 

  Relative Entropy 0.86 0.01 0.86 0.02 0.86 0.02 0.87 0.02 

  ROI Relative Entropy 0.64 0.10 0.65 0.11 0.61 0.10 0.67 0.10 

  TRK Revisit 4.08 1.67 3.19 1.45 3.05 0.78 2.82 1.05 

  RM Revisit 2.59 1.21 2.24 1.02 2.13 0.83 2.14 0.82 

Trust Metric Set         

  TOAST: Understanding 5.16 1.39 5.10 0.88 4.96 1.12 5.05 0.86 

  TOAST: Performance 3.87 1.65 4.14 1.55 4.03 1.52 4.24 1.43 

  Automation Reliance 0.06 0.06 0.15 0.28 0.14 0.10 0.09 0.20 

  SYS Auto Dwell %* -5.33 6.62 -1.38 2.36 -7.16 4.00 -4.27 13.72 

  TRK Auto Dwell %* -9.00 8.84 -10.25 8.90 -14.12 7.50 -9.85 9.88 

  COM Auto Dwell %* -19.84 10.27 -12.78 17.74 -14.43 11.15 -11.01 13.11 

  RM Auto Dwell %* -18.04 20.83 -12.42 12.31 -33.25 24.71 -13.59 10.88 

Note. Metrics marked * were reverse scored so that higher values consistently reflect a higher 

level of the construct (higher CWL, higher SA, or higher trust). 

 

The trust metric set captured both global trust attitudes and subsystem-specific reliance 

behaviors during automation. Subjective trust was measured using the TOAST scales for 

understanding and performance. Behavioral reliance was calculated as the percentage of time to 

which operators deferred to automation versus manual control. In addition, trust calibration was 

assessed via dwell time percentages for each subtask, which represented the proportion of dwell 

time operators spent monitoring a task while it was automated. Lower dwell times within the 

subtask were assumed to correlate with more trust in the system to do its job without being 
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actively monitored. Because greater reliance and lower dwell time are indicative of higher trust, 

all dwell time metrics were reverse scored so that lower dwell values reflected higher trust. This 

ensured directional consistency across the set, with higher scores uniformly representing greater 

trust in automation. 

Multivariate Analysis - Cognitive Workload 

Assumption checks. 

Prior to analysis, all dependent variables were examined for multivariate assumptions. 

Robust Mardia’s test of multivariate normality indicated no significant skew (skew = 1781.17,   

p = 1.00), though significant kurtosis was detected (kurtosis = -21.17, p < .001), suggesting some 

departure from multivariate normality. However, no multivariate outliers were identified at the 

97.5% Mahalanobis distance cutoff, and no dependent variable pairwise correlations exceeded 

|0.90|, indicating the absence of problematic multicollinearity. Together, these results supported 

the suitability of the dataset for multivariate analysis of variance (MANOVA), with Pillai’s 

Trace selected because it is the most robust multivariate test statistic under violations of 

normality and heterogeneity of variance-covariance assumptions (Olson, 1974; Tabachnick & 

Fidell, 2019). 

Omnibus MANOVA. 

To reduce redundancy and limit error inflation, PCA was applied to the 10 selected 

workload measures. The PCA retained seven components, explaining 93.6% of the total 

variance. A repeated-measures MANOVA was then conducted with transparency, handoff, and 

their interaction as within-subjects factors. Results revealed a significant multivariate effect of 

transparency on the combined dependent variables, Pillai’s Trace = .35, F(1, 23) = 12.52, p = 

.002, η² = .35. No significant main effect of handoff was found, Pillai’s Trace = .07, F(1, 23) = 

1.70, p = .205, η² = .07. However, the transparency × handoff interaction was significant, Pillai’s 

Trace = .29, F(1, 23) = 9.34, p = .006, η² = .29. Figure 3 depicts the estimated marginal means of 

the interaction effect. 

Table 3. Omnibus MANOVA Results for Cognitive Workload PCA Set (7 Principal 

Components) 

Effect Statistic Value F df1 df2 p η² 

Transparency Pillai’s Trace 0.35 12.52 1 23 .002 .35 

Handoff Pillai’s Trace 0.07 1.70 1 23 .205 .07 

Transparency x Handoff Pillai’s Trace 0.29 9.34 1 23 .006 .29 
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Figure 3. Transparency and handoff differences in multivariate cognitive workload results 

(higher values indicate higher workload). 

Linear Discriminant Analysis (LDA). 

LDA was performed to identify which metrics had the largest multivariate effect and 

determine the classification accuracy (as a percentage of correct classifications and AUC for 

ROCs). For the significant transparency and interaction effects, the leave-one-subject-out cross-

validation demonstrated high classification accuracy for transparency (96.9%, AUC = 0.99) and 

good accuracy for the combined condition-level, interaction classification (69.8%, AUC = 0.92; 

relative to random chance of 25%). 

Transparency functions. 

One discriminant function was extracted for transparency. Back-projected PCA-LDA 

coefficients confirmed that multitasking efficiency (weight = 5.50), SYS score (4.06), and pupil 

diameter (1.06) loaded positively, whereas RM score (-2.65) and ISA scores (-1.58) loaded 

negatively. This pattern defines what we termed the efficiency-monitoring function, which 

captures operators’ ability to manage concurrent tasks while sustaining vigilance on vision-based 
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monitoring tasks, with lower reliance on subjective self-reports of strain. Higher scores on this 

function indicate stronger multitasking efficiency and system monitoring coupled with reduced 

physiological load. As depicted in Figure 4, classification results revealed that opaque 

automation conditions aligned with superior profiles on this function, as operators in the opaque 

condition demonstrated higher multitasking efficiency and vigilance with lower self-reported 

strain, whereas transparent conditions clustered in the opposite direction. Note that this 

discriminant axis is oriented such that higher function scores reflect a more efficient/low-strain 

profile, even though individual CWL measures were aligned as higher = higher workload for the 

MANOVA. The near-perfect separation of opaque and transparent conditions (AUC = 0.99) 

highlights the robustness of this function in distinguishing automation transparency effects on 

workload regulation.   

 

Figure 4. LDA function scores for transparency efficiency-monitoring function. 

Condition-level functions. 

For the four-level condition classification (transparency × handoff), three primary 

discriminant axes were extracted, but only the first two are examined and plotted in Figure 5 for 

ease of visualization. The first axis, efficiency-coordination, weighted positively on multitasking 

efficiency (-.157), SYS score (.111), and COM score (.049), but negatively on RM score (-.063). 

This axis distinguished operators who successfully integrated multitasking, vigilance, and 

communication performance from those who faltered under resource management demands. 
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Inspection of group centroids (see ‘X’ markers in Figure 5) indicated that the opaque-forced 

condition scored highest on this axis, reflecting strong integrated performance, whereas the 

transparent-voluntary condition scored lowest, showing breakdowns in coordination and resource 

management score balance due to the extra display and decision-making management 

requirements of the condition. 

The second axis, resource-workload tradeoff, contrasted negative loadings on RM score 

(-.056) and COM score (-.104) with a positive loading on IMPRINT workload estimates (.075). 

High scores on this axis indicated stable resource management scores despite elevated modeled 

workload, while low scores reflected resource management task strain paired with deceptively 

low workload predictions. Centroid separation showed that voluntary conditions leaned higher 

on this axis, suggesting that voluntary takeovers preserved resource management stability even at 

the cost of higher modeled workload. Conversely, forced handoffs trended lower, reflecting 

fragile resource management task control despite lighter workload estimates. 

These functions (AUC macro = 0.920; Figure 5) provided robust discrimination of the 

four condition profiles, with opaque-voluntary emerging as the most favorable overall for 

cognitive workload reduction (highest combined scores on LD1 and LD2), transparent-forced as 

the least favorable, and the other two conditions diverging depending on whether operator 

control (opaque-forced) or resource stability (transparent-voluntary) was prioritized. 

 

Figure 5. Four condition discriminant analysis plot for the CWL metric set. X markers indicate 

group centroids. 
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Univariate follow-ups. 

Follow-up repeated-measures ANOVAs were conducted for each dependent measure to 

clarify the source of significant multivariate effects. For transparency, significant effects were 

observed for multitasking coefficient, F(1, 23) = 229.34, p < .001, ηp² = .92, and SYS score,   

F(1, 23) = 17.97, p = .001, ηp² = .46. No other performance, physiological, or subjective 

measures reached significance after FDR correction. For handoff, the strongest effect was found 

for COM score, F(1, 23) = 43.38, p < .001, ηp² = .65, indicating that communication task 

reliance differed reliably across voluntary versus forced handoffs. For the transparency × handoff 

interaction, no effects reached significance after FDR correction, indicating that transparency 

and handoff primarily exerted independent rather than interactive influences on workload at the 

univariate level. No other univariate effects were significant. 

Table 4. Repeated-Measures ANOVA Results for CWL Metrics with Benjamini-Hochberg FDR 

Correction for Multiple Comparisons 

 Transparency Handoff Interaction 

Measure p (FDR) ηp² p (FDR) ηp² p (FDR) ηp² 

Performance Metrics       

IMPRINT .563 .02 .244 .10 .247 .09 

COM Score .563 .03 < .001 .65 .069 .24 

RM Score .417 .08 .108 .20 .247 .10 

SYS Score .001 .46 .479 .04 .069 .25 

TRK Score .563 .02 .479 .04 .938 0 

Multitasking Coefficient < .001 .92 .244 .18 .247 .12 

Physiological Metrics   
 

 
 

 

ECG LF:HF (% Δ) .102 .06 .479 .02 .852 .10 

Pupil Diameter (% Δ) .455 .19 .490 .03 .247 0 

Subjective Metrics       

NASA-TLX .765 0 .490 .02 .317 .07 

ISA Score .563 .03 .206 .13 .852 .01 
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Multivariate Analysis – SA 

Assumption checks. 

Multivariate assumptions were first evaluated. Robust Mardia’s test indicated significant 

departures from multivariate normality in terms of kurtosis (skew = 1781.31, p = 1.00; kurtosis = 

-21.17, p < .001). However, no multivariate outliers were detected at the 97.5% Mahalanobis 

distance cutoff, and no dependent variable correlations exceeded |.90|, suggesting the absence of 

multicollinearity. The dataset was therefore deemed appropriate for multivariate analysis using 

Pillai’s Trace as a metric robust to the multivariate normality violation. 

Omnibus MANOVA. 

To reduce redundancy among the 10 SA measures, PCA was conducted. Seven 

components were retained, explaining 91.9% of the variance. A repeated-measures MANOVA 

indicated a significant multivariate effect of transparency, Pillai’s Trace = .29, F(1, 23) = 9.60, p 

= .005, η² = .29, and a significant multivariate effect of handoff, Pillai’s Trace = .58, F(1, 23) = 

31.75, p < .001, η² = .58. The transparency × handoff interaction was also significant, Pillai’s 

Trace = .24, F(1, 23) = 7.36, p = .012, η² = .24. These results are presented in Table 5 and 

depicted in Figure 6. 

Table 5. Omnibus MANOVA Results for Situational Awareness PCA Set (n = 7 PCs) 

Effect Statistic Value F df1 df2 p η² 

Transparency Pillai’s Trace 0.29 9.60 1 23 .005 .29 

Handoff Pillai’s Trace 0.58 31.75 1 23 < .001 .58 

Transparency x Handoff Pillai’s Trace 0.24 7.36 1 23 .012 .24 

 

 

Figure 6. Transparency and handoff differences in multivariate SA results (higher values 

indicate higher SA). 
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LDA. 

Cross-validated linear discriminant analysis with leave-one-subject-out train/test splits 

showed good classification accuracy for transparency (80.2%, AUC = 0.90), handoff (83.3%, 

AUC = 0.93), and the four-level condition interaction classification (74.0%, macro/micro AUC = 

0.92; relative to chance at 25%). 

Transparency functions. 

One discriminant function was retained for transparency. Back-projected PCA-LDA 

coefficients indicated that relative entropy (-2.18), SAGAT projection (-2.03), SAGAT 

comprehension (+1.28), and TRK revisit mean (+0.99) were the primary contributors, with 

smaller effects from SART dimensions and relative entropy ROI. This pattern defines a 

projection-comprehension balance function; it distinguishes operators who sustain forward-

looking projection and systematic scanning, paired with comprehension of task states, from those 

whose projection deteriorates despite attempts to maintain scanning breadth. The distribution of 

scores (as seen in Figure 7) confirmed that opaque automation displays consistently yielded 

higher discriminant scores than transparent automation displays, indicating that opacity enhanced 

projection and comprehension while supporting balanced attentional allocation. Classification 

performance was strong, with an AUC of .90, demonstrating reliable separation of transparent 

from opaque conditions. 

 

Figure 7. LDA function scores for transparency projection-comprehension balance function. 
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Handoff functions. 

A single discriminant function was extracted for handoff classification in the SA domain. 

Back-projected coefficients revealed that SAGAT comprehension (-3.65), TRK revisit mean 

(+1.78), and SAGAT perception (+1.62) were the dominant loadings, with smaller contributions 

from SART demand, supply, and entropy-based scanning indices. This function, which we label 

comprehension-reacquisition, reflects the extent to which comprehension and perceptual 

continuity are preserved versus disrupted during transitions. Voluntary handoffs yielded more 

negative function scores, consistent with stronger comprehension and more frequent revisits to 

dynamic subtasks, while forced handoffs clustered positively, indicating that comprehension was 

degraded and had to be reacquired after the system took control. The ROC analysis confirmed 

robust discrimination between voluntary and forced conditions (AUC = 0.93), emphasizing that 

SA during transitions hinges on whether operators are permitted to anticipate and manage the 

handoff or are forced to rebuild understanding afterward. 

 

Figure 8. LDA function scores for handoff comprehension-reacquisition function. 

Condition-level functions. 

For the four-level condition classification (transparency × handoff), two primary 

discriminant functions emerged that accounted for the majority of discrimination among 

conditions (overall classification accuracy = 73.9%, macro AUC = .921). The first axis (x-axis; 

LD1) reflected a comprehension-perception tradeoff, distinguishing conditions where deeper 

comprehension of system state was preserved versus those that relied more on surface-level 

perceptual cues. Positive loadings for SAGAT comprehension (+0.148) contrasted with negative 
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weights for SAGAT perception (-0.063) and TRK revisit mean (-0.046), indicating that higher 

LD1 scores corresponded to conditions supporting richer comprehension and more stable 

monitoring strategies. Lower scores, in contrast, suggested fragmented perceptual monitoring 

with reduced revisiting of dynamic subtasks. 

The second axis (y-axis; LD2) captured a projection-attention balance, emphasizing 

forward-looking situational awareness and systematic attentional distribution. Strong positive 

weightings for SAGAT projection (+0.107) and relative entropy (+0.064), combined with a 

negative contribution from TRK revisit mean (-0.070), indicated that higher LD2 values reflected 

conditions fostering future-oriented awareness and balanced scanning. Lower values suggested 

more reactive strategies, with attention distributed unevenly across subtasks. 

These two functions highlight that opaque displays and forced handoffs were associated 

with richer comprehension and projection-oriented awareness, whereas transparent or voluntary 

handoff conditions shifted operators toward more fragmented and reactive monitoring patterns. 

Note that the condition ordering here reflects multivariate discriminant space (LD1-LD2); it may 

differ from omnibus MANOVA or univariate ANOVA SA effects that emphasized voluntary 

handoffs for preserving comprehension. 

 

Figure 9. Discriminant space plot for SA metric discriminant analysis across conditions. X 

markers indicate group centroids. 
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Univariate follow-ups. 

Follow-up repeated-measures ANOVAs, corrected for multiple comparisons using the 

Benjamini-Hochberg FDR procedure, clarified the sources of these multivariate effects (Table 

6). 

For transparency, significant effects emerged for relative entropy, F(1, 23) = 29.91, p < 

.001, ηp² = .55; SAGAT comprehension, F(1, 23) = 11.95, p = .006, ηp² = .35; SAGAT 

projection, F(1, 23) = 34.98, p < .001, ηp² = .62; RM revisit mean, F(1, 23) = 7.42, p = .025, ηp² 

= .24; and TRK revisit mean, F(1, 23) = 10.48, p = .009, ηp² = .32. 

For handoff, the strongest effect was observed for SAGAT comprehension, F(1, 23) = 

38.09, p < .001, ηp² = .63. Additional significant effects included relative entropy ROI, F(1, 23) 

= 6.47, p = .020, ηp² = .28; TRK revisit mean, F(1, 23) = 6.40, p = .020, ηp² = .27; and SAGAT 

perception, F(1, 23) = 6.12, p = .020, ηp² = .27. 

The transparency × handoff interaction reached significance for relative entropy, F(1, 23) 

= 6.67, p = .042, ηp² = .21; relative entropy ROI, F(1, 23) = 7.02, p = .042, ηp² = .23; SAGAT 

comprehension, F(1, 23) = 5.22, p = .042, ηp² = .21; SAGAT projection, F(1, 23) = 12.72, p = 

.012, ηp² = .33; and RM revisit mean, F(1, 23) = 7.09, p = .042, ηp² = .25. 

Overall, these results indicate that opaque displays most consistently enhanced 

projection, comprehension, and monitoring, whereas handoff effects were concentrated in 

comprehension and revisit behavior, with voluntary handoffs yielding superior performance. 

Importantly, several interaction effects highlight that the benefits of transparency depended on 

the handoff method, particularly for projection and resource management processes. 
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Table 6. Repeated-Measures ANOVA Results for Situational Awareness Metrics with 

Benjamini-Hochberg FDR Correction for Multiple Comparisons 

 Transparency Handoff Interaction 

Measure p (FDR) ηp² p (FDR) ηp² p (FDR) ηp² 

Entropy Metrics       

Relative Entropy < .001 .55 .265 .08 .042 .21 

Relative Entropy ROI .706 .01 .020 .28 .042 .23 

Revisit Metrics       

RM Revisit Mean .025 .24 .079 .17 .042 .25 

TRK Revisit Mean .009 .32 .020 .27 .096 .15 

SAGAT Metrics       

SAGAT: Comprehension .006 .35 < .001 .63 .042 .21 

SAGAT: Perception .198 .10 .020 .27 .605 .02 

SAGAT: Projection < .001 .62 .760 0 .012 .33 

SART Metrics       

SART: Demand .386 .05 .405 .04 .773 0 

SART: Supply .268 .08 .617 .02 .372 .05 

SART: Understanding .742 .01 .662 .01 .222 .10 

 

Multivariate Analysis – Trust in Automation 

Assumption checks. 

Multivariate assumptions were assessed prior to analysis. Robust Mardia’s test indicated 

significant departures from multivariate normality in terms of kurtosis (skew = 1778.50, p = 

1.00; kurtosis = -21.20, p < .001). However, no multivariate outliers were identified using a 

97.5% Mahalanobis cutoff, and no dependent variable correlations exceeded |.90|, indicating 

acceptable levels of multicollinearity. The dataset was therefore considered suitable for 

MANOVA, with Pillai’s Trace selected as the omnibus test statistic given its robustness to 

violations of multivariate normality. 

Residualization of trust metrics. 

Because individuals differ in their baseline propensity to trust automation, raw trust-

related outcome measures were residualized prior to analysis. Specifically, each metric was 

regressed on scores from the Adapted Propensity to Trust in Technology Questionnaire (Jessup 

et al., 2019), which was administered before any task interaction to assess the participant’s biases 

toward automated technology. By residualizing trust outcomes on this measure, subsequent 

MANOVA and discriminant analyses isolated the variance attributable to experimental 

manipulations of transparency and handoff, rather than preexisting individual differences in trust 

in automation propensity. This ensured that observed trust effects reflected task-driven 

influences rather than dispositional biases. 
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Omnibus MANOVA. 

Residualized trust measures (n = 10) were entered into the MANOVA, including TOAST 

residuals, automation reliance, and eye gaze behavior metrics. Results showed no significant 

multivariate effect of transparency, Pillai’s Trace = .11, F(1, 23) = 2.98, p = .098, η² = .11. A 

significant effect of handoff was observed, Pillai’s Trace = .34, F(1, 23) = 12.10, p = .002, η² = 

.34. The transparency × handoff interaction did not reach significance, Pillai’s Trace = .10, F(1, 

23) = 2.46, p = .131, η² = .10. MANOVA results are presented in Table 7 and depicted in Figure 

10. 

Table 7. Omnibus MANOVA Results For Trust In Automation Metrics Regressed Onto APTQ 

Scores 

Effect Statistic Value F df1 df2 p η² 

Transparency Pillai’s Trace 0.11 2.98 1 23 .098 .11 

Handoff Pillai’s Trace 0.34 12.10 1 23 .002 .34 

Transparency x Handoff Pillai’s Trace 0.10 2.46 1 23 .131 .10 

 

 

Figure 10. Transparency and handoff differences in multivariate trust results (higher values 

indicate higher trust). 
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Linear discriminant analysis. 

Cross-validated LDA achieved a classification accuracy of 74.0% for the significant main 

effect of handoff, with an area under the ROC curve of AUC = 0.845. One discriminant function 

was retained, dominated by automation dwell-time measures. The strongest contributors were 

resource management dwell time (d = .67), system monitoring dwell time (d = .43), and 

communications dwell time (d = .39). Smaller but still meaningful influences came from 

automation reliance (d = -.27), tracking dwell time (d = .17), and TOAST performance (d = .16). 

The resulting discriminant function score distributions are depicted in Figure 11. 

This discriminant function captured the degree to which trust behaviors aligned with 

automation use by contrasting genuine reliance with inflated, forced reliance. High scores 

reflected conditions in which operators continued to dwell extensively on automated subtasks 

despite high automation usage, a pattern indicative of mistrust. Low scores, in contrast, reflected 

reduced monitoring of automated subtasks when automation was engaged, consistent with 

increased trust. 

In practice, voluntary handoffs were associated with lower scores on this axis, as 

operators reduced dwell time on automated subtasks and demonstrated trust that the automation 

could function without constant oversight. Forced handoffs, however, clustered at higher values, 

where automation reliance was inflated by design, but operators still devoted significant 

monitoring effort, undermining the calibration of trust. Thus, this reliance-monitoring 

Calibration function shows that voluntary handoff produced more authentic trust behaviors, 

whereas forced handoff yielded a mismatch between automation use and operator confidence. 

 

Figure 11. LDA function scores for handoff reliance-monitoring calibration function. 
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Univariate follow-ups. 

Follow-up repeated-measures ANOVAs were conducted to explore individual variables. 

For handoff, only significant effects emerged for RM auto dwell %, F(1, 23) = 9.76, p = .049, ηp² 

= .28, after correction. No transparency main effects were significant. The transparency × 

handoff interaction did not yield significant univariate effects. 

Table 8. Repeated-Measures ANOVA Results for Trust in Automation Metrics with Benjamini-

Hochberg FDR Correction for Multiple Comparisons 

 Transparency Handoff Interaction 

Measure p (FDR) ηp² p (FDR) ηp² p (FDR) ηp² 

Reliance Metric       

Automation Reliance .747 0 .475 .04 .121 .22 

Gaze Metrics       

COM Auto Dwell % .262 .11 .101 .19 .727 .02 

RM Auto Dwell % .211 .17 .049 .28 .121 .18 

SYS Auto Dwell % .266 .09 .153 .14 .843 .01 

TRK Auto Dwell % .211 .14 .638 .02 .257 .09 

Subjective Metrics       

TOAST: Performance .321 .06 .404 .06 .853 0 

TOAST: Understanding .321 .05 .886 0 .727 .02 
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Table 9. Discriminant Function Names, Definitions, and Loadings by Metric Set 

Name Definition Primary Loadings 

Cognitive Workload 
  

Transparency:  

Efficiency-Monitoring  

Captures operators’ ability to manage concurrent tasks while sustaining vigilance on vision-based monitoring. 

High values reflect strong multitasking efficiency and system monitoring, with lower reliance on self-reported 

strain. 

MTC (+5.4), SYS (+4.0),   

RM (-2.6), ISA (-1.6) 

Condition LD1: 

Efficiency-Coordination  

Distinguishes operators who integrate multitasking, system monitoring, and communication performance 

against those faltering in resource management. High values indicate integrated performance; low values 

reflect breakdowns in coordination. 

MTC (+.157), SYS (+.111), 

COM (+.49), RM (-.63) 

Condition LD2: 

Resource-Workload Tradeoff  

Captures the tension between resource management demands and modeled workload. High values reflect 

stable resource management with moderate workload; low values indicate resource strain despite relatively 

low modeled workload estimates. 

RM (-.56), COM (-.104), 

IMPRINT (+.075) 

Situational Awareness 
  

Transparency: 

Projection- 

Comprehension Balance  

Differentiates conditions by emphasizing forward-looking projection and systematic scanning versus 

degraded comprehension. Transparency supports both projection of future states and balanced attentional 

allocation, allowing operators to sustain deeper situational models. 

Rel. Entropy (-2.183), 

SAGAT Pro (-2.028), 

SAGAT Comp (+1.128),  

TRK Revisit (+0.993) 

Handoff:  

Comprehension-Reacquisition  

Captures the degree to which comprehension and perception of system state are preserved or disrupted during 

control transitions. Voluntary handoffs preserve comprehension and revisit frequency, whereas forced 

handoffs undermine integration, requiring operators to reacquire understanding. 

SAGAT Comp (-3.648),   

TRK Revisit (+1.784), 

SAGAT Per (+1.618) 

Condition LD1: 

Comprehension-Perception 

Tradeoff  

Distinguishes conditions where comprehension is dominant from those where reliance shifts toward surface 

perception with reduced revisiting of dynamic subtasks. This reflects how awareness toggles between 

meaningful understanding and fragmented perceptual monitoring across automation conditions. 

SAGAT Comp (+0.148), 

SAGAT Per (-0.063),  

TRK Revisit (-0.046) 

Condition LD2: Projection-

Attention Balance  

Reflects differences in future-oriented awareness (projection) and systematic attentional distribution (entropy, 

revisits). Transparent and voluntary conditions promote projection with balanced scanning, whereas opaque 

or forced conditions yield fragmented, reactive monitoring strategies. 

SAGAT Pro (+0.107),          

TRK Revisit (-0.070),  

Rel. Entropy (+0.064) 

Trust in Automation 
  

Handoff:  

Reliance-Monitoring 

Calibration  

Differentiates voluntary vs. forced handoff by capturing the contrast between genuine behavioral trust (lower 

dwell time on subtasks under voluntary handoff) and inflated automation reliance (forced handoff). Voluntary 

handoff was associated with reduced monitoring of automated subtasks (greater calibrated trust), whereas 

forced handoff inflated reliance values artificially while eroding genuine trust behaviors. 

RM A. Dwell % (.67),  

SYS A. Dwell % (.43),  

COM A. Dwell % (.39),   

Auto Reliance (-.27) 
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Discussion 

The purpose of this study was to examine how transparency and handoff method, two 

foundational features of adaptive automation, jointly influence operator CWL, SA, and trust in 

automation. These three constructs represent core determinants of effective human-automation 

teaming, yet the ways in which they interact with system design choices are complex and often 

yield divergent outcomes. By employing a within-subjects 2 × 2 design, supported by 

multivariate analyses and discriminant function modeling, the present work sought to clarify how 

transparency and handoff individually shape operator states in a demanding aviation 

environment while also exploring their joint interaction. 

Across the three assessment domains, the hypotheses received mixed but informative 

levels of support, revealing both convergence and divergence in how transparency and handoff 

shape operator states. For cognitive workload, transparency emerged as the dominant factor, but 

in the opposite direction of the original prediction, transparent conditions significantly increased 

workload, whereas opaque conditions reduced strain and supported efficiency-monitoring 

profiles. Voluntary handoff did not yield strong workload benefits overall, suggesting that 

transparency, not handoff, was the primary workload driver. 

For situational awareness, both factors mattered. Opaque displays enhanced 

comprehension, projection, and attentional distribution, while voluntary handoff preserved 

comprehension and mitigated the disruptive effects of transitions. Together, these findings show 

that SA is best maintained when opacity is paired with user control (i.e., voluntary handoffs). 

For trust, handoff was decisive. Voluntary transitions significantly enhanced reliance and 

trust behavior (automation reliance and reduced automated subtask monitoring) across 

subsystems, whereas transparency did not produce reliable trust gains. 

These patterns indicate that transparency primarily regulates cognitive load and 

attentional balance, handoff governs the relational dynamics of trust, and situational awareness 

emerges at their intersection. The strongest outcomes were not achieved under transparency, but 

rather when opaque displays were paired with voluntary handoffs, which consistently produced 

favorable operator states across workload, SA, and trust. Conversely, the transparent-forced 

combination undermined performance across multiple constructs, while the mixed conditions 

revealed tradeoffs depending on which factor dominated. This pattern of results is illustrated in 

Figure 12, with the main effects summarized in Table 10 alongside corresponding design 

recommendations, and the exploratory interaction findings detailed in Table 11. These findings 

highlight that adaptive automation design must avoid privileging one construct at the expense of 

others. 
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Table 10. Summary of Results Relative to Hypotheses (H) 1-6 

Hypothesis Factor Level Observed Change Design Recommendations 

Transparency 

H1: CWL Transparent  ↑ p = .002, η² = .35 ✗ Avoid continuous transparency in 

high-demand phases; use opaque 

displays operationally 

H2: SA Transparent  ↓ p = .005, η² = .29 ✗ Avoid persistent confidence 

readouts; provide transparency only on 

demand 

H3: Trust Transparent × p = .098, η² = .11 ⚠ Transparency alone does not build 

trust; combine with reliability cues and 

voluntary handoffs 

Handoff Method 

H4: CWL Voluntary × p = .205, η² = .07 ⚠ No strong workload benefit, but ✓ 

retain voluntary handoff for flexibility 

H5: SA Voluntary ↑ p < .001, η² = .58 ✓ Always prefer voluntary handoff; 

preserves comprehension/projection 

H6: Trust Voluntary ↑ p = .002, η² = .34 ✓ Adopt voluntary/autonomy-by-

consent handoffs to foster calibrated 

reliance 

 

Table 11. Summary of Exploratory Interaction Effects Between Transparency and Handoff 

Method 

Transparency 

Level 

Handoff 

Method Level Design Recommendations 

CWL (p = .006, η² = .29) 

Transparent  Voluntary ↑ ⚠ Use only in training/rehearsal; elevates workload in 

operations 

Transparent  Forced ↓ ✗ Short-term CWL benefit but harms SA, do not 

deploy operationally 

Opaque Voluntary ↓ ✓ Best pairing for workload reduction and agency; set 

as default 

Opaque Forced ↓ ⚠ Lowers CWL but ✗ harms trust, limit to emergency 

overrides 

SA p = .012, η² = .24 

Transparent  Voluntary ↑ ⚠ Useful in training/low tempo, selective use only 

Transparent  Forced ↓ ✗ Worst-case, avoid entirely 

Opaque Voluntary ↑ ✓ Optimal, supports projection and comprehension 

Opaque Forced ~ ⚠ Neutral but weaker than voluntary, secondary 

option only 
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Figure 12. Summary of operator states across a 2 × 2 design crossing transparency (transparent 

vs. opaque) with handoff method (voluntary vs. forced).  

1. Opaque-Voluntary: The optimal profile. CWL decreased, SA improved across all facets: 

higher comprehension, stronger projection, and balanced scanning (entropy and revisits). 

Trust also increased, with voluntariness preserving reliance and limiting unnecessary 

monitoring. 

2. Transparent-Voluntary: CWL increased due to transparency’s attentional costs, but SA 

improved in comprehension and projection. Attentional balance was maintained at 

moderate levels, with voluntariness buffering strain. Trust also rose, as voluntary handoffs 

sustained calibrated reliance despite workload elevation. 

3. Opaque-Forced: Opacity lowered workload and partially supported SA by preserving 

projection and some scanning balance. Comprehension declined under forced handoffs, 

requiring reacquisition. Trust dropped, with forced transitions eroding reliance despite 

efficiency gains. 

4. Transparent-Forced: The poorest profile. SA declined across comprehension, projection, 

and visual scanning, with fewer revisits to dynamic subtasks. Trust also fell, as operators 

over-monitored automation under reduced agency. Workload was also lower relative to 

the transparent-voluntary condition and in-line with the other conditions. 
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Cognitive Workload 

The CWL results demonstrate that transparency was the dominant determinant of 

workload regulation, but in the opposite direction of expectations. Rather than reducing 

workload, transparency significantly increased strain, while opaque conditions supported better 

multitasking efficiency, system monitoring, and overall vigilance. This finding directly 

contradicted H1 and suggests that providing continuous system visibility may impose additional 

attentional and coordination costs in high-demand supervisory control settings. 

By contrast, handoff method alone did not significantly alter workload, offering only 

partial support for H4. Still, its influence was evident in certain subtasks. Voluntary handoffs 

preserved resource management stability, while forced handoffs disrupted coordination in 

communication-heavy domains. Thus, transparency drove global workload differences, while 

handoff shaped how those effects were distributed across tasks. 

These results diverge from classic predictions that transparency should reduce uncertainty 

and thereby lower workload (Kaber & Endsley, 2004; Wickens, 2002). Instead, they align with 

more recent critiques of the “transparency paradox.” Explanatory content can clarify automation 

logic but simultaneously increase cognitive load when delivered during complex, time-sensitive 

tasks. The exceptionally strong effect on multitasking efficiency (ηp² = .92) further reinforces 

that excessive transparency undermines operators’ ability to coordinate across subtasks, a critical 

competency in aviation and other multitasking domains. 

From a design perspective, these findings suggest that opaque displays should be 

prioritized during high-demand operational phases (e.g., degraded visual environments, high 

communication load), where reducing strain and supporting vigilance is paramount. 

Transparency may still have value, but primarily in training, mission rehearsal, or on-demand 

contexts, where attentional costs are less consequential and explanatory cues can be leveraged 

for learning. Handoff design remains secondary but important. Voluntary transitions should be 

the default, as they help preserve coordination, while forced overrides should be reserved for 

emergencies. 

In sum, the CWL results reveal that transparency increased workload rather than reduced 

it, while opacity enabled more efficient multitasking and monitoring. Voluntary handoffs offered 

localized benefits but could not offset the elevated workload induced by transparency. These 

findings refine workload theory by showing that context, task demand, and timing determine 

whether transparency alleviates or exacerbates operator strain. 

Situational Awareness 

The SA results show that both transparency and handoff method strongly influenced 

awareness, but with different roles. Transparency increased attentional strain, such that opaque 

displays yielded higher comprehension, projection, and balanced scanning, while voluntary 

handoffs preserved continuity of comprehension during transitions. The large effect sizes 

associated with handoff highlight that transition quality is the primary determinant of SA 

preservation, consistent with Endsley’s (1995) model that awareness is most fragile at control 

transfer points. 
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The second hypothesis, that transparency would improve SA, was not supported; instead, 

opaque displays provided clearer scaffolding for comprehension and projection while transparent 

displays primarily shaped scanning (entropy/revisits) without delivering net SA gains. The fifth 

hypothesis, that voluntary handoff would improve SA, was supported, with voluntariness 

protecting comprehension and reducing disruption during transitions. Importantly, the interaction 

between transparency and handoff showed that the best outcomes occurred under opaque-

voluntary conditions, while the worst outcomes occurred under transparent-forced conditions, 

where both attentional load and control disruptions undermined SA. 

These findings refine SA theory in several ways. First, they confirm that projection and 

comprehension are the most vulnerable levels of SA (Endsley, 1995), and demonstrate that 

opacity, by reducing attentional overhead, better supports both. Second, they align with prior 

evidence that forced transitions degrade comprehension and projection (Chen & Barnes, 2014; 

Wright et al., 2018), while voluntary handoffs allow operators to sustain mental models across 

shifts in control. Finally, the eye-tracking results support work linking entropy balance and 

revisit frequency to higher awareness (Jones & Endsley, 2004; Pan et al., 2025), showing that 

opaque-voluntary conditions fostered systematic monitoring strategies. 

From a design perspective, these findings suggest that opaque displays should be the 

default in operational phases, where minimizing workload and preserving comprehension are 

critical. Transparency can still serve a role in training or low-demand contexts, but operational 

systems should instead emphasize voluntary, predictable handoffs that preserve comprehension 

and continuity of SA. Eye-tracking indices could also serve as real-time triggers for adaptive 

display management, detecting when SA begins to degrade and delaying or adjusting handoffs 

accordingly. 

In sum, the SA results indicate that opacity scaffolds projection and voluntary handoff 

preserves comprehension, with the two factors jointly determining awareness outcomes. The 

most favorable conditions combined both, while the transparent-forced pairing consistently 

undermined SA. 

Trust in Automation 

The trust results revealed a different pattern than CWL and SA. Handoff quality, not 

transparency, was the dominant determinant of trust calibration. Transparency showed only a 

weak, nonsignificant trend, whereas voluntary handoffs consistently preserved reliance and 

reduced over-monitoring, especially in resource management tasks. This underscores that trust is 

shaped less by informational context and more by operators’ perceived autonomy and control 

during transitions. 

The third hypothesis, that transparency would enhance trust, was not supported. By 

contrast, the sixth hypothesis, that voluntary handoff would foster higher trust, was supported, 

with voluntariness distinguishing conditions through reliance-based behaviors. This aligns with 

theories that describe trust as fundamentally relational, rooted in autonomy, predictability, and 

controllability (Lee & See, 2004; Hoff & Bashir, 2015). Operators appeared to interpret forced 

handoffs as violations of agency, which eroded trust even when automation performed 

competently. 
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Behavioral measures such as dwell time on automated subtasks proved more sensitive 

than global trust ratings, echoing Dzindolet et al.’s (2003) observation that operators may report 

trust but still monitor excessively when trust is fragile. The discriminant analysis highlighted this 

distinction through a reliance-monitoring calibration function, where voluntary handoffs were 

associated with genuine calibrated reliance (less monitoring), and forced handoffs reflected 

inflated reliance paired with persistent oversight. 

Condition-level comparisons reinforced this conclusion. Opaque-voluntary and 

transparent-voluntary handoffs produced the highest trust, with little difference between them, 

while both forced handoff conditions yielded the lowest trust outcomes. This ordering shows that 

handoff quality outweighed transparency in shaping trust, distinguishing trust patterns from 

CWL (dominated by transparency) and SA (shaped by both factors). 

From a design standpoint, these findings indicate that handoff processes should be the 

primary lever for trust management. Effective systems should prioritize voluntary, predictable, 

and reversible transitions, reserving forced overrides for emergencies. Transparency can 

supplement these processes, but it cannot compensate for poor handoff design. Monitoring 

reliance behaviors such as dwell time in real-time may allow adaptive automation to detect 

erosion of trust and dynamically adjust handoff timing or transparency cues to recalibrate 

confidence. 

In sum, the trust findings confirm that handoff quality is central to building and 

preserving trust, while transparency plays only a supporting role. Trust is relational rather than 

informational, dependent on how automation engages operators, not just on what it reveals about 

its internal state. 

Future Adaptive Automation Design Guidelines 

The synthesis of CWL, SA, and trust findings provides clear design guidance for next-

generation adaptive automation systems in Army aviation. Unlike earlier frameworks that 

emphasized one construct at the expense of others, the present results show that CWL, SA, and 

trust are shaped differently by transparency and handoff method. Effective design must therefore 

adopt a multidimensional perspective, ensuring that interventions in one domain do not 

unintentionally degrade another. 

The first principle derived from this work is that transparency elevates workload under 

complex multitasking conditions. Contrary to prior assumptions (Kaber & Endsley, 2004; 

Wickens, 2002), continuous transparency increased strain and degraded multitasking efficiency, 

suggesting that added contextual cues can overload attention when presented during high-

demand phases (simulated by the high multitasking demand of the USAARL MATB). In Army 

aviation, where pilots must manage degraded visual environments, dense communications, and 

rapid decision cycles, continuous transparency may act as a cognitive distractor rather than a 

resource regulator. Consistent with recent critiques of the “transparency paradox” (Wright & 

Barber, 2021; Wright et al., 2020), transparency should therefore be restricted to training, 

rehearsal, or on-demand contexts, rather than being the default for full-time operational displays. 

For line operations, opaque interfaces with selectively triggered transparency (e.g., query-driven 

explanations or phase-selective overlays) are more likely to safeguard workload efficiency. 
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The second principle is that handoff voluntariness is the primary determinant of trust. 

Forced handoffs consistently eroded calibrated reliance, even when transparency cues were 

present, while voluntary handoffs preserved trust regardless of display condition. This highlights 

that trust in automation is less about what the system reveals and more about whether the 

operator retains agency over transitions (Lee & See, 2004; Hoff & Bashir, 2015). For Army 

aviation, this means that automation should operate on an “autonomy-by-consent” basis, where 

aircrew initiate or confirm transitions. Emergency overrides using forced control takeover remain 

necessary in safety-critical cases (e.g., collision avoidance, loss of control), but systems should 

provide clear justifications for forced handoffs and rapid paths for re-engagement. 

The third principle is that SA requires coordination between transparency and 

voluntariness. Opaque displays supported comprehension and projection by reducing attentional 

overhead, while transparent displays primarily shaped scanning strategies and can raise strain 

under high tempo tasks such as the USAARL MATB. Voluntariness preserved comprehension 

across transitions. Only when opacity and voluntary handoffs were combined did operators 

demonstrate optimal awareness, reflected in higher SAGAT scores, balanced gaze entropy, and 

revisit behaviors. These findings extend Endsley’s (1995) model by showing that projection is 

best scaffolded by display opacity, while comprehension continuity depends on voluntary control 

of transitions. For Army aviation, this implies that explanatory cues should be delivered in 

synchrony with voluntary handoffs, ensuring that awareness is carried forward seamlessly across 

the human-automation boundary. 

The fourth principle is that condition-level tradeoffs must be anticipated. As shown in 

Tables 10 and 11, intermediate configurations (e.g., transparent-forced, opaque-voluntary) 

yielded partial benefits but also significant deficits. Transparent-forced reduced workload in 

some subtasks but undermined awareness and trust, while opaque-voluntary reduced workload 

and supported trust but did not fully optimize awareness. For Army aviation, this underscores the 

need for multi-objective optimization, where transparency and handoff are dynamically tuned to 

balance CWL, SA, and trust simultaneously. This approach aligns with recent recommendations 

for integrated adaptive automation frameworks (Pharmer et al., 2025). 

Finally, the results highlight the importance of dynamic, context-sensitive adaptation. 

Operator states fluctuate across mission phases, task demands, and environmental stressors. 

Fixed transparency settings or rigid handoff policies are insufficient. Instead, adaptive 

automation should employ real-time classifiers based on CWL efficiency, SA indicators (e.g., 

entropy, revisit patterns), and trust behaviors (e.g., dwell time) to guide adjustments. In Army 

aviation, this means that during high-tempo phases (e.g., nap-of-the-earth flight or degraded 

visibility), systems should default to opaque-voluntary, while in lower-tempo or training 

contexts, transparency-on-demand can enhance learning and projection without overloading. 

In conclusion, the present findings suggest that the future of adaptive automation in Army 

aviation lies in integration rather than isolation of design principles. Transparency must be 

carefully phase-selected, voluntariness must be prioritized to preserve trust, and the coordinated 

use of both is necessary to sustain SA. Designing systems that dynamically balance these 

principles will enhance not only efficiency and resilience but also operator confidence and safety 

in high-demand operational environments. 
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Limitations 

Although the present study offers novel insights into the effects of transparency and 

handoff on CWL, SA, and trust in automation, several limitations must be acknowledged. First, 

the relatively small sample size of 24 aviators constrains statistical power and limits 

generalizability. Larger and more diverse samples would strengthen confidence in the robustness 

of the observed effects and allow further examination of potential moderating variables such as 

flight experience, age, or propensity to trust automation. 

Second, the study employed categorical manipulations of transparency (transparent vs. 

opaque) and handoff (voluntary vs. forced), rather than graded or continuous levels. In practice, 

transparency and autonomy management often exist on a spectrum, with varying degrees of 

system explanation, predictability, and operator control. The dichotomous manipulation therefore 

simplifies complex design variables and may not capture the full range of real-world system 

behavior. It is likely that the true optimal configuration will fluctuate between individuals and 

with various stressors. Future research should explore more granular manipulations that reflect 

the continuum of transparency and autonomy. 

Third, trust in automation was measured within a relatively short experimental 

timeframe. Although residualization on the Adapted Propensity to Trust in Technology 

Questionnaire controlled for trait-level trust tendencies, state trust itself may evolve over longer 

periods of exposure, shaped by repeated cycles of reliability and performance feedback. The 

weak condition-level discriminability of trust observed in this study may therefore reflect its 

slower-moving nature. Longitudinal studies are needed to determine how transparency and 

handoff jointly influence trust trajectories over extended use as experience with the system is 

developed. Additionally, the sample collected for this study was represented by aviators with a 

skewed distribution of flight experience, potentially underrepresenting mid-career aviators, as 

seen in Figure 13.  
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Figure 13. Distribution of aviator experience by flight hours. 

Finally, although the study leveraged multiple converging measures within each 

construct, ecological validity remains limited. The USAARL MATB platform captures important 

features of active and supervisory control but does not fully replicate the complexity, stress, or 

stakes of operational aviation missions. Additionally, the laboratory environment in which the 

USAARL MATB was presented does not simulate the motion artifacts that are common in 

applied settings. Translating these findings into applied contexts will require testing in higher-

fidelity simulators, in actual aircraft (in training centers or using our research Black Hawk), and 

eventually in field settings. 

Conclusion 

This study examined how transparency and handoff methods jointly shape CWL, SA, and 

trust in automation within a demanding aviation task environment. Multivariate analyses and 

discriminant modeling revealed that while these three constructs are tightly interrelated, they 

respond to automation design features in distinct yet overlapping ways. Transparency 

consistently increased CWL by taxing attentional resources, yet it also shaped aspects of SA by 

supporting projection and influencing scanning strategies. Opacity provided more stable benefits 

for comprehension and projection, while voluntariness of handoff emerged as the cornerstone of 

trust, preserving calibrated reliance across conditions. Together, these patterns highlight that 

CWL, SA, and trust are not governed by a single design lever, but by the dynamic interplay of 

transparency and handoff. 

Across conditions, the rankings revealed that the opaque-voluntary combination was 

globally optimal, producing the lowest CWL, the highest SA, and the strongest trust. At the 

opposite extreme, the transparent-forced condition yielded the poorest outcomes, with degraded 
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SA, diminished trust, and elevated CWL demands. The intermediate combinations highlighted 

important tradeoffs; transparent-voluntary preserved trust and bolstered SA but carried higher 

workload costs, while opaque-forced reduced workload and partially preserved SA but 

undermined trust through abrupt transitions. These findings emphasize that transparency and 

handoff are not interchangeable levers; rather, they address different operator needs and must be 

carefully balanced. 

From an applied perspective, the results point to several design imperatives for adaptive 

automation in Army aviation. Transparency should not default to full-time operation, as 

continuous displays increase workload under high-demand conditions; instead, transparency 

should be phase-selective or on-demand, used primarily in training, rehearsal, or lower-tempo 

phases. Handoff mechanisms should default to voluntariness, as operator agency is the hallmark 

of calibrated trust, with forced overrides reserved for emergencies and accompanied by clear 

justifications. Finally, SA requires coordination between display mode and handoff process; 

opacity supports comprehension and projection, while voluntariness preserves comprehension 

across transitions. Synchronizing these design features ensures that awareness is maintained even 

during dynamic handoffs. 

The broader implication of this study is clear, effective adaptive automation is not about 

choosing transparency or voluntariness in isolation, but about integrating both within a cohesive, 

context-sensitive design philosophy. Transparency influences cognitive strain, voluntariness 

governs trust in the system, and awareness emerges when these dimensions are aligned. By 

recognizing this interdependence, future adaptive automation can move beyond piecemeal 

interventions toward holistic architectures that enhance operator performance and resilience. 

The takeaway message is simple yet consequential; automation that explains itself but 

seizes control will not be trusted; automation that cedes control but burdens operators with 

transparency will elevate workload; and automation that conceals its logic while forcing 

transitions will degrade awareness. In short, the future of adaptive automation will not be won by 

transparency or autonomy alone, but by learning when to stay opaque, when to yield, and when 

to let the human lead.
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Appendix A. Acronyms and Abbreviations 

ANOVA Analysis of Variance 

APTQ Adaptive Propensity to Trust in Technology Questionnaire 

COM Communications Task 

CWL Cognitive Workload 

df Degrees of Freedom 

ECG Electrocardiogram 

EEG Electroencephalography 

FDR False Discovery Rate 

GUI Graphical User Interface 

HRV Heart Rate Variability 

IMPRINT Improved Performance Research Integration Tool 

ISA Instantaneous Self-Assessment (of workload) 

KSS Karolinska Sleepiness Scale 

LD Linear Discriminant 

LDA Linear Discriminant Analysis 

LF:HF Low Frequency:High Frequency (band ratio) 

LSL Lab Streaming Layer 

MANOVA Multivariate Analysis of Variance 

MATB Multi-Attribute Task Battery 

NASA National Aeronautics and Space Administration  

PCA Principal Component Analysis 

PVT Psychomotor Vigilance Task 

RM Resource Management Task 

RMSSD Root Mean Square of Successive Differences 

ROC Receiver Operating Curve 

ROI Region of Interest 

SA Situational Awareness 

SAGAT Situation Awareness Global Assessment Tool 

SART Situational Awareness Rating Technique 

SYS System Monitoring Task 

TLX Task Load Index 

TRK Tracking Task 

UAV Unmanned Aerial Vehicle 

UH-60 Utility Helicopter 60 (Black Hawk) 

USAARL U.S. Army Aeromedical Research Laboratory 

VOGL Virtual Offloading Guidance Logic 

ηp² Partial Eta Squared 

 



 



 



 

All of USAARL’s science and technical informational documents are        

available for download from the Defense Technical Information Center. 
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