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Summary

Military aviation increasingly depends on automation to manage complex missions, yet
static or pilot-initiated systems risk misuse, disuse, or over-reliance. Adaptive automation offers
a potential solution by dynamically adjusting autonomy in response to operator state. This study
examined two foundational design features, system transparency (transparent vs. opaque displays
of automation state/rationale) and handoff method (voluntary vs. forced activation), to assess
their effects on pilot cognitive workload (CWL), situational awareness (SA), and trust in
automation.

Twenty-four rated Army aviators performed four sessions of the U.S. Army Aeromedical
Research Laboratory (USAARL) Multi-Attribute Task Battery (MATB) augmented with an
adaptive automation controller driven by workload modeling. A within-subjects 2 x 2 design
crossed transparency and handoff manipulations. Multimodal outcomes were collected, including
subjective workload ratings, behavioral performance, physiological measures
(electrocardiogram, pupillometry, eye tracking), and validated SA (Situation Awareness Global
Assessment Tool, Situational Awareness Rating Technique, visual entropy metrics) and trust
(Trust of Automation Systems Test, reliance, dwell metrics) assessments.

Results revealed a differentiated pattern across constructs. Transparency was the
dominant driver of workload, but in the opposite direction of the initial hypothesis; transparent
displays increased CWL (p = .002, ?=.35), degrading multitasking efficiency and system
monitoring. A significant transparency x handoff interaction also emerged (p = .006, #° = .29).
For SA, both factors mattered; transparent conditions shaped scanning strategies but opaque
displays produced higher comprehension and projection (p = .005, #? = .29), while voluntary
handoffs strongly preserved comprehension across transitions (p <.001, #?=.58). Their
interaction was significant (p =.012, n?=.24), with opaque-voluntary yielding the most
favorable SA profile. Trust was governed primarily by handoff method (p = .002, »? = .34);
voluntary handoffs improved reliance calibration and reduced over-monitoring while a task was
automated whereas transparency alone did not increase trust (p = .098). Discriminant analyses
corroborated these patterns (e.g., ~97% transparency classification for CWL; ~80-83% for SA
transparency/handoff; ~74% for trust handoff).

Together, the results highlight a central design principle: Transparency influences
cognitive workload, voluntariness governs trust calibration, and SA is optimized when display
mode and handoff method are aligned with optimal configurations. At the condition level,
opaque-voluntary produced the best overall operator state (lower workload, stronger SA, higher
trust), whereas transparent-forced produced the poorest outcomes. These findings provide
concrete guidance for adaptive automation in high-demand Army aviation: Default to opaque
displays with voluntary, autonomy-by-consent handoffs, and deploy transparency
selectively/phase-specifically or on demand to avoid workload penalties while preserving
awareness and trust.
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Introduction

Few domains have embraced automation as rapidly and pervasively as aviation. From the
earliest decades of flight, system designers and operators recognized that the cognitive demands
of flying could quickly exceed human limits. This recognition fueled a continuous push to embed
automated processes wherever they could provide relief, precision, and consistency. Over time,
automation permeated virtually every corner of aviation; manufacturing lines leveraged robotic
assembly (Peck, 1959), recordkeeping systems shifted to digital automation to streamline
logistics (Zimmerman et al., 1964), and even air traffic control adopted automated conflict-
detection aids (Hink, 1974; Couluris et al., 1978). Each of these advances reflected a shared
logic; by removing some portion of human burden, automation could reduce errors, extend
capability, and enhance safety.

This orientation toward automation has only accelerated in the military sector. The 2022
milestone flight of a fully autonomous UH-60 Black Hawk helicopter was more than just a
technological demonstration, it represented a glimpse of the near-future operator role (Lockheed
Martin, 2022). Rather than being stick-and-rudder pilots, pilots are increasingly positioned as
supervisory controllers of complex, semi-autonomous systems. Such a shift brings both
opportunity and tension; operators may be freed from micromanagement, but they also risk being
distanced from the system’s underlying state and deprived of engagement. As Black Hawk
development shows, supervisory control is not speculative; it is already here. The question is no
longer whether automation should be integrated but Zow the human and machine should share
control.

The rationale for such developments is longstanding. Warren (1956) observed nearly
seventy years ago that the demands of piloting could routinely overwhelm capacity, particularly
under high workload phases such as takeoft, landing, and combat maneuvering. Since then, those
demands have only grown; modern military aviators must integrate weapons management,
cooperative teaming with unmanned systems, communications, and navigation, all while
maintaining continuous vigilance over a dynamic environment. The result is a workload
environment in which human limits are routinely tested, if not exceeded.

Yet the paradox of automation is equally as old. As Thackray (1980) and de Waard
(1996) noted, when automation relieves too much demand, operators can drift into underload,
boredom, and lapses in vigilance. Excessive automation reliance may also degrade pilot skills
through lack of engaged practice. The accident record confirms this. A widely cited review by
Kayes and Yoon (2022) shows that cognitive oftfloading to automation has contributed to both
systemic safety issues and specific aviation mishaps. Perhaps most striking is the counterfactual:
the Apollo 11 landing in 1969, where astronaut Neil Armstrong’s manual override of the
automated descent system averted what could have been a catastrophic crash (David, 2019).
Here automation provided invaluable support, but human intervention was still decisive. Such
anecdotes underscore the paradox — automation can save lives, but only when designed in a way
that balances relief with engagement.

This double-edged legacy frames the central problem, automation can extend human
capacity, but it can also reconfigure the cognitive ecology of the cockpit in ways that introduce
new vulnerabilities. Parasuraman and Riley (1997) famously characterized this problem as one



of “use, misuse, and disuse.” Sheridan and Parasuraman (2005) elaborated that supervisory
control environments are particularly fraught, as operators must allocate attention between
system monitoring and their own direct tasks, often without clear guidance about how authority
should be shared. This tension drives the present focus, if automation is inevitable, then the
challenge is not whether to automate but zow to design the transitions of control so that optimal
workload levels, awareness, and trust are preserved.

The Adaptive Automation Problem

The rise of adaptive automation has been one of the most promising responses to this
challenge. Instead of setting automation levels statically, adaptive systems can adjust task
allocation dynamically based on the operator’s predicted cognitive state. The conceptual
framework is straightforward:

1. Monitoring. Physiological signals (e.g., heart rate variability, pupil diameter,
electroencephalogram frequency bands), behavioral cues (e.g., gaze scan patterns,
affective speech analyses), and contextual cues (e.g., task demand, environmental phase
of flight, operation within performance envelopes) are continuously observed.

2. Estimation. These signals are transformed into interpretable features known to change
with cognitive states and fed into models that estimate operator states such as workload,
fatigue, or vigilance.

3. Adaptation. When estimates exceed or approach thresholds (e.g., overload, underload),
automation is engaged or disengaged to bring the operator back into a target zone that
denotes an optimal arousal-performance balance.

This loop promises a way to keep operators “in the sweet spot,” engaged enough to
sustain vigilance but supported enough to avoid overload. In theory, such a system could prevent
both catastrophic errors from task saturation and subtle degradations from underload.

Decades of work reveal that building such systems is far easier in principle than in
practice. Real-time physiological monitoring is noisy, individualized, and context-dependent.
Models that classify cognitive states often struggle to generalize across operators or
environments. Even when reliable signals exist, translating them into automation actions
introduces another layer of uncertainty: When should it be automated? Which subtask should be
automated? How should it be automated? How long should it be automated? The literature is
rife with cautionary tales of adaptive automation that relieved one burden while inadvertently
creating another, either by disengaging operators from critical monitoring or by re-engaging
them abruptly without context (Ruff et al., 2002).

For the current study, we developed a pseudo-adaptive automation system that allows us
to bypass the current technically infeasible portions of the adaptive automation problem (e.g.,
translating from raw and noisy physiological signals to actionable output) and get to the heart of
the when, which, how, and how long questions plaguing the field of automation. We have
tackled this challenge by modifying a standard low-fidelity aviation software platform, the U.S.
Army Aeromedical Research Laboratory (USAARL) Multi-Attribute Task Battery (MATB; see
Vogl et al. [2024b] for further details on the software), to include a simulated adaptive
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automation system based on computational task analysis methods. To do this, we integrated the
USAARL MATB with the Improved Performance Research Integration Tool (IMPRINT; see
Bommer et al. [2025] for more details). IMPRINT, originally developed by the U.S. Army
Research Laboratory and Micro Analysis & Design, models cognitive workload by quantifying
interference across simultaneous task demands (Buck-Gengler et al., 2012). Within the USAARL
MATRB, all possible combinations of subtasks were modeled (192 in total) to produce workload
scores that can be assigned in real time during simulation. This allows the system to display
workload over the preceding 10 seconds and project workload 5 seconds into the future, based on
known task states in the scenario file. In effect, the MATB uses IMPRINT as a stand-in for
physiological monitoring, creating a simulated adaptive automation environment.

The resulting logic is both technical and oddly animate. By setting thresholds for
overload and underload, the system can dynamically automate or revoke subtasks to bring
workload back into a “comfort zone.” Crucially, these choices are not random; the algorithm
selects the subtask predicted to yield the largest workload benefit in that context. This process
gives the system a compelling quasi-intentional quality, as though the automation were actively
“choosing” its actions. In practice, and with apologies to the author Mary Shelley, it evokes
something akin to Frankenstein’s monster, stitched together from models and thresholds, not
truly alive but moving and adapting in ways that suggest autonomy. While this remains a
simulation rather than a true physiology-driven system, it allows researchers the ability to start
answering questions related to automation handoffs that may otherwise not be presently
approachable with the current state-of-the-art of physiologically driven adaptive automation
pipelines. In this study, we employ the use of our MATB’s simulated adaptive automation
system to consider design principles that may help shape the advancement of human-automation
interactions, especially regarding control transitions.

Why Transitions Matter

Even if workload estimation were solved, one problem remains particularly intractable,
control transitions. Early frameworks such as Parasuraman et al.’s (2000) taxonomy of levels of
automation and Endsley’s (1995) three-level model of situational awareness warned that abrupt
shifts of authority can undermine performance, particularly if operators are deprived of context.
Empirical studies since then have reinforced the point. Molloy and Parasuraman (1992) showed
that forced automation takeovers degraded awareness and slowed responses. Ruff et al. (2002)
demonstrated that abrupt supervisory control transfers disrupted communication and
coordination. Chen and Barnes (2014) found that in unmanned aerial vehicle operations, forced
handoffs increased workload and eroded trust. The recurring message is simple; transitions are
not neutral events. They reconfigure attention, awareness, and relational dynamics, often at the
very moment when performance is most fragile.

Two factors dominate these discussions, transparency and handoff method.
Transparency refers to how much the automation reveals about its logic, state, and intentions.
Handoff method refers to whether control transfers are voluntary (initiated or confirmed by the
operator) or forced (initiated by the system), or scaled somewhere in between. Together, these
factors determine how operators experience transitions: Do they understand why the system is
acting, and do they retain agency over whether the action occurs?



The literature leans heavily toward the view that more transparency and more
voluntariness are better. Sheridan et al. (1978) argued that automation must not be a “black box.’
Billings (1996) framed transparency as essential to human-centered design. Endsley (1995)
showed that transparency supports all three levels of SA, perception, comprehension, and
projection. Parasuraman and Riley (1997) warned that forced handoffs risk both misuse and
disuse by eroding trust. More recently, reviews such as Vogl et al. (2024a) have reaffirmed these
themes, highlighting transparency and handoff as the two most consistent recommendations
across three decades of adaptive automation research.
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And yet, the picture may not be so one-sided. As supervisory control becomes the norm,
several scholars have warned that less cluttered displays and more decisive automation actions
might actually be beneficial, particularly under high workload. While transparency can improve
comprehension, it also introduces another panel to scan, another channel to process, and
additional mental workload, raising the risk that the cost of added visibility may outweigh its
benefits (Van de Merwe et al., 2024; Gegoff et al., 2024). Similarly, although voluntary handoffs
preserve operator agency, they also impose a decision burden, requiring the operator to evaluate
prompts and take manual action under competing demands. In time-critical contexts, forced
handoffs may therefore reduce cognitive load by removing that decision point and freeing the
operator to focus on primary tasks (Akash et al., 2020; Villani et al., 2018).

Together, these findings suggest that the design of transitions cannot be reduced to a
binary judgment of “more is better” for either transparency or voluntariness. Instead, the
effectiveness of these features appears to be deeply context-dependent, shaped by the cognitive
demands of the task, the timing of transitions, and the operator’s mental model of system
behavior. This recognition sets the stage for a closer examination of transparency and handoff
method not as isolated design principles, but as dynamic levers that interact with workload,
situational awareness, and trust in complex ways. The following sections consider each in turn,
beginning with transparency, tracing its theoretical foundations, empirical evidence, and
implications for adaptive automation.

Transparency in Adaptive Automation

Transparency has been described as the lifeblood of human-automation teaming. From
Sheridan et al. (1978) early insistence that operators must “see inside” system logic, to Billings’
(1996) framing of human-centered automation, the principle has remained remarkably stable,
operators need visibility into automation’s reasoning and intentions if they are to work
effectively alongside it.

The operational justification is straightforward. Aviation tasks are inherently
multichannel and time sensitive. If operators are left uncertain about why an automated system
acted, or about what it will do next, they must divert scarce attentional resources to reconstruct
system state. Transparency relieves this demand by making the automation’s logic visible,
narrowing the range of possibilities the operator must entertain, and allowing attention to be
directed where it is most needed.



In terms of cognitive workload (CWL), transparency can be thought of as a regulator. By
revealing what the system is monitoring and what thresholds it is applying, transparency reduces
the uncertainty that drives inefficient scanning and redundant monitoring. Rather than
continuously checking whether automation is functioning, the operator can offload some
monitoring to the system itself, while retaining confidence in its criteria. Under Multiple
Resource Theory (Wickens, 2002), this reduction in cognitive resource interference directly
lightens workload. The Region Model (de Waard, 1996) reinforces this idea; by lowering the
background cost of uncertainty, transparency helps keep workload within the optimal
performance band rather than drifting into overload or underload (see Figure 1).

Region D Al A2 A3 B C
High
Low - state-related optimal task-related - ———
effort performance effort
Task Demand =———p = == == Performance
— COgnitive Workload
« = - = Resource Supply

Figure 1. The Region Model (left; adapted from de Waard, 1996; Young et al., 2015).

For SA, transparency provides scaffolding. Endsley’s (1995) three-level model
emphasizes perception, comprehension, and projection. Transparency contributes at all three
levels, it exposes perceptual cues about current state, clarifies the rationale for why those cues
matter, and makes system intentions explicit to support projection. In supervisory environments,
where operators may not be hands-on with controls, projection is particularly vulnerable.
Transparency helps maintain forward-looking awareness even when the operator’s primary role
is monitoring rather than manual control.

The link between transparency and trust is more contested. Transparency has often been
proposed as a calibration mechanism, allowing operators to align their reliance with system
capability (Lyons, 2013). In principle, visibility into system logic should prevent overtrust
(delegating when the system is weak) and undertrust (withholding reliance when it is strong).
But the literature has shown mixed results. Too much transparency can overwhelm, confuse, or
frustrate operators. Wiener (1989) warned that information overload can be just as damaging as
opacity. Transparency is valuable not as an unbounded stream but as tailored, comprehensible,
and actionable cues.



Handoff Methods in Adaptive Automation

If transparency determines what the operator knows about automation, handoff
determines what the operator controls. Handoff refers to the manner in which authority is
transferred between human and system. The contrast is sharp. Voluntary handoffs occur when
the system recommends an action but leaves the decision to the operator. Forced handoffs occur
when the system acts unilaterally.

The implications for cognitive workload are intuitive but not always straightforward.
Voluntary handoffs preserve operator agency but impose an additional decision cost. Each
prompt requires attention, evaluation, and response. In a busy multitasking environment, these
micro-decisions can accumulate. Forced handoffs, by contrast, relieve this decision burden. The
operator can remain focused on current tasks while the system reallocates control in the
background. Yet this very relief can also create disruption. When control shifts without
preparation, workload can spike as the operator scrambles to catch up. Whether voluntary
handoffs genuinely reduce workload, or whether forced handoffs can be protective of workload
by removing decision load, remains an empirical question.

For SA, the trade-offs are sharper. Endsley (1995) emphasized that awareness is most
vulnerable at points of transition, when mental models must be updated. Voluntary handoffts
allow operators to anticipate transitions and align their mental models in advance. Forced
handoffs risk leaving operators disoriented, struggling to reacquire comprehension of system
state. Ruff et al. (2002) showed that abrupt supervisory control transfers degraded situational
awareness in communication-heavy tasks. In this sense, voluntariness preserves continuity. Yet
here too a nuance exists, in some cases, forced handoffs may act as a safeguard, ensuring that
automation engages when the operator is inattentive or overloaded. Whether the preservation of
comprehension outweighs the potential safety benefits is precisely the kind of tension that must
be examined systematically.

For trust, handoff is arguably the decisive factor. Trust is fundamentally relational; it
reflects whether the operator perceives the automation as a dependable teammate (Lee & See,
2004). Forced handoffs can be interpreted as automation overreach, undermining perceptions of
controllability and damaging trust. Voluntary handoffs, by contrast, affirm the operator’s role as
decision-maker, reinforcing perceptions of agency and aligning trust with reliability. Chen and
Barnes (2014) found that voluntary handoffs enhanced trust calibration in unmanned aerial
vehicle control, while forced handoffs eroded reliance even when system performance was high.

Still, even here there are counterpoints. Casner and Schooler (2014) argued that forced
handoffs can be vital safety nets, particularly in cases of incapacitation or delayed operator
response. From this perspective, voluntariness is not universally superior; its advantages must be
weighed against the system’s obligation to act when human performance falters.



Gaps and Rationale for the Present Study

Despite decades of research, guidance on transition design remains underdeveloped. Most
studies have focused on when automation should act, for example, triggering based on workload
thresholds or system failures. Far fewer studies have examined how automation should act with
multiple facets of design principles, specifically, how much context it should provide
(transparency) and whether control should be confirmed or imposed (handoff). Vogl et al.
(2024a) emphasized this gap in their review, noting that while transparency and handoff are the
most frequently recommended design principles, systematic tests of these factors within the same
study and together are sparse.

The present study was designed to fill this gap by systematically manipulating
automation transparency (transparent versus [vs.] opaque) and handoff method (voluntary vs.
forced) within a low-fidelity simulation environment. Using the USAARL MATB augmented
with IMPRINT workload modeling, we were able to precisely control task demands and
automation behavior while engaging rated aviators in complex supervisory control tasks that
approximate operational aviation contexts. Outcomes were assessed across three core constructs,
CWL, SA, and trust in automation, using a multimodal measurement strategy that combined
subjective scales, physiological indices, and behavioral performance. This comprehensive
approach ensured that each condition could be evaluated not only in isolation but also in terms of
how transparency and handoff jointly shaped the dynamics of human-automation teaming.
Critically, this multidimensional framework reflects the interdependence of CWL, SA, and trust
in automation; reducing workload does not automatically preserve awareness, and maintaining
awareness does not necessarily yield calibrated trust. By integrating these constructs, the present
study provides a more holistic evaluation of how transition design features influence operator
state and system performance.

From this framework, six hypotheses were developed. The first three hypotheses concern
the effect of transparency, in line with the longstanding claims that transparent displays reduce
uncertainty, narrow attentional demands, and support trust calibration (Wickens, 2002; Lyons,
2013).

e Hypothesis 1: Automation displays that provide more context of the automated state
(i.e., transparent) will yield lower levels of CWL relative to less verbose (i.e., opaque)
automated systems.

e Hypothesis 2: Automation displays that provide more context of the automated state
(i.e., transparent) will yield higher levels of SA relative to less verbose (i.e., opaque)
automated systems.

e Hypothesis 3: Automation displays that provide more context of the automation state
decisions (i.e., transparent) will yield higher levels of trust in the automated system
relative to silent (i.e., opaque) automated systems.



The second set of hypotheses state that voluntary transitions preserve operator agency,
enhance comprehension, and improve trust calibration by avoiding perceptions of automation
dominance (Ruff et al., 2002; Chen & Barnes, 2014).

e Hypothesis 4: Automation systems that suggest manual activation of automation
(i.e., voluntary handoff) will yield lower levels of CWL relative to automation systems
that automatically take control of a subtask (i.e., forced handoff).

e Hypothesis 5: Automation systems that suggest manual activation of automation
(i.e., voluntary handoff) will yield higher levels of SA relative to automation systems that
automatically take control of a subtask (i.e., forced handoff).

e Hypothesis 6: Automation systems that suggest manual activation of automation
(i.e., voluntary handoff) will yield higher levels of trust in automation relative to
automation systems that automatically take control of a subtask (i.e., forced handofY).

In summary, the present research investigates how transparency and handoff method
shape the three pillars of human-automation teaming assessment. By systematically testing these
factors in a controlled aviation simulation with U.S. Army rated aviators, the study provides
empirical evidence to inform the design of next-generation adaptive automation systems. The
hypotheses are structured to test both the main effects of transparency and handoff and explore
their combined consequences (as little work had been done to explore their interaction),
producing findings that can be directly mapped to practical guidelines for system designers.

Methods

The study was reviewed and approved by the U.S. Army Medical Research and
Development Command Institutional Review Board prior to execution. This study employed a
within-subjects design across two factors each with two levels. A 2 (handoff method: voluntary
vs. forced) by 2 (transparency level: transparent vs. opaque) study design was utilized to address
the research objectives.

Participants

A total of 24 rated aviators (male = 23, female = 1; muge = 39.46 [standard deviation
[SD] = 7.11]) participated in this study. All participants self-reported being in good health, free
from medications that could induce drowsiness, and abstinent from alcohol or sedatives for 24
hours, caffeine for 16 hours, and nicotine for 2 hours prior to data collection. Recruitment
occurred in the Fort Rucker area through word-of-mouth, flyers, social media, and e-mail
communications. Participants provided written informed consent prior to study enrollment. Upon
completion of the study, participants who were in a “leave” status received $200 in gift cards as
compensation.

Participants had an average career flight time of 2589.75 (SD = 1929.23) hours.
Participants reported an average of 7.58 (SD = 0.84) hours of sleep the night before and the
average Karolinska Sleepiness Scale score across all participants was 2.58 (SD = 1.10). All
participants reported to be alert at the start of the study. All participants passed the required



training thresholds and finished the study with complete data sets.
Materials
USAARL MATB.

The USAARL MATB was used as the experimental platform. The USAARL MATB is
an aviation-like simulation environment consisting of four concurrently performed subtasks
designed to mimic activities commonly performed in a cockpit. Figure 2 displays the graphical
user interface (GUI) of the simulation. A full description of the software and paradigm is
provided in Vogl et al. (2024b), with brief descriptions below.

System monitoring (SYS) subtask.

Participants completed a discrete visual vigilance task involving four lights, each mapped
to a unique joystick button. When a light illuminated, the participant pressed the corresponding
button to extinguish it before it timed out (5 seconds). Accuracy and reaction time were
recorded, combined, and normalized to yield a SYS score for the subtask.

Communications (COM) subtask.

Participants monitored auditory channels for their callsign (e.g., “NASA 504”) and
responded by adjusting radio, channel, and frequency settings to match the instructions they
heard. Distractor messages directed at other callsigns were to be ignored. Accuracy and response
time were recorded, combined, and normalized to yield a COM score for the subtask.

Tracking (TRK) subtask.

Participants performed a continuous compensatory tracking task, using a joystick to
control a randomly moving circle and keep it aligned with a central target square. Deviations
were recorded and normalized (against a deviation window of four units) to yield a TRK score
for the subtask.

Resource management (RM) subtask.

Participants used a mouse to manage fuel levels across two primary tanks, maintaining
them near a target fuel level of 2000 fuel units while they continuously drained throughout the
simulation. Pumps with varying flow rates transferred fuel, while occasional pump shutoffs and
failures (i.e., disabled the pump for 10 seconds) added dynamic decision demands. Fuel levels
were continuously recorded, combined, and normalized (against a deviation window of 500 fuel
units) to yield a RM score for the subtask.
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Figure 2. The USAARL MATB graphical user interface (GUI). The four subtasks, the subjective
workload prompt, and the transparent Virtual Offloading Guidance Logic (VOGL) system are
displayed.

Virtual Offloading Guidance Logic (VOGL) - USAARL MATB automation system.

The VOGL system enables experimental manipulations of automation reliability,
transparency, and handoff method. VOGL was designed to provide automation assistance across
all four of the primary USAARL MATB subtasks, allowing for dynamic control and varied
operator-system interactions to address research questions in the field of human-automation
teaming. The VOGL system was enhanced from the standard system presented in Vogl et al.
(2024), to address the needs of the current study. Here, a brief overview of the relevant updates
will be provided.

Reliability.

Automation systems come with varying levels of reliability in terms of how well they can
perform the task they were designed to automate. An automation system can likely achieve
minimum thresholds of performance under ideal conditions, but reliability may deteriorate under
real-world conditions. Within the VOGL automation system, we defined reliability as the subtask
score that is achieved by the system when it is automated. Formulas and algorithms were
integrated into the VOGL system to derive these scores in real-time and to give the illusion of
variable reliability levels. For example, while under automation, the tracking task would drift
less erratically as if under the control of the VOGL system, with some random but system-
deliberate drifts to maintain the appearance of active task performance while also controlling for
the score that the automation system could achieve. The discrete tasks (SYS and COM) were
more difficult to enable ‘real-time’ performance, so instead, negative feedback was incorporated
to highlight incorrect responses made by the system (e.g., static would be played if the
automation system ‘incorrectly’ put the wrong radio channel in). These updates made the
automation feel more realistic, allowing the USAARL MATB program to bridge the gap from a
simple desktop program to a more involved aviation simulation.
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For the current study, reliability itself was not changed between conditions presented in
the USAARL MATB program. Instead, static reliability was targeted at 80% for all subtasks
across all conditions, with the exception of TRK which was targeted at 85%. While these
reliability levels may appear low relative to our general understanding of what makes a good
score (e.g., grade school percentages), they were specifically chosen to mimic the response
profile similar to, if not slightly better than, a novice performer of the USAARL MATB task.
This ensured that the automation system was perceived at known reliability levels for each
participant consistently throughout the study and that it would not always be the best choice to
automate everything all at once. Instead, these automation levels ensured a balance of human and
automation performance that could be leveraged to achieve a high score in the program.

Transparency.

The VOGL system was designed to be able to change its transparency level, i.e., how
much information it provides the operator regarding its decision-making process. Two
transparency levels were tested. In the transparent condition, the operator would be provided an
additional panel with information regarding the current experienced workload, the thresholds the
system uses to determine when automation should be turned on or off, and the ability to alter
how the automation system makes its decisions (to an extent). A depiction of the VOGL
workload panel with the transparent automation window open is available in Figure 2. In the
opaque conditions, the VOGL panel on the righthand side of the GUI is not visible, resulting in
the only interface with the automation system being the switches in the lower left corner of the
GUL

Handoff method.

Two handoff methods were also utilized in the current study. In the voluntary handoff
condition, the operator would be presented a suggestion to turn on automation for a specific
subtask. This suggestion would occur when the tracked workload value (derived by IMPRINT
scores) crossed the red-line threshold (e.g., see the Estimated Cognitive Workload plot in the
upper right of Figure 2). The suggestion would be indicated by turning the corresponding
automation switch to a red color (i.e., red to remove the task from their control responsibilities)
in the lower left VOGL switch panel. In the case of a revocation suggestion (i.e., the workload
value is below the green line indicating underload), the corresponding automation switch color
would turn green (i.e., green to add the task to their control responsibility). These suggestions
were then to be considered by the operator but the decision to automate or revoke was ultimately
left to them. Conversely, in the forced condition, automation or revocation actions would be
automatically applied, without any input from the operator. Additionally, the operator would
have no control over automating any subtask or revoking control unless the system made the
action itself. This would yield a dynamic passing back and forth of the subtask controls between
the VOGL system and the operator without the operator having to make the decision.

11



Physiological devices.

Two physiological devices were used to estimate cognitive workload and situational
awareness changes during task performance. Standard operating procedures were followed for
the use of each device in accordance with the device user manuals. Each of the recorded
physiological measures were synchronized utilizing the open-source Lab Streaming Layer (LSL)
protocol.

Cardiac activity.

The Polar H10 electrocardiogram (ECG) system was used to monitor cardiac activity
during the USAARL MATB simulations. The Polar H10 consists of a single strap that is placed
around the mid-point of the participant’s chest and a Bluetooth sensor module that samples ECG
data at a rate of 130 Hertz (Hz). For the current study, the Polar H10 was remotely linked to the
data collection computer. The ECG data were processed to derive metrics known to correlate
with changes in cognitive workload. These metrics included heart rate (in beats per minute) and
heart rate variability (i.e., low frequency - high frequency ratio). These metrics were derived as
average values across each testing condition.

Eye-tracking.

The participants’ eye movement activity was recorded using the Gazepoint 3 High
Definition (GP3 HD) eye-tracking system. The GP3 HD system is a remote video-based eye-
tracking system that was mounted securely under the monitor on which the USAARL MATB
GUI was displayed. The GP3 HD eye tracker collected eye movement data to determine which
subtask in the USAARL MATB the participant was looking at, as well as pupil diameter data.
Eye-tracking data were collected at a sample rate of 150 Hz, with 0.5-1.0 degree of visual angle
accuracy. The GP3 HD data were collected using both an LSL-synchronized approach and using
the accompanying Gazepoint Analysis software for video playback.

Eye-tracking data were processed to generate metrics aligned with CWL, SA, and trust in
automation. Cognitive workload was assessed using pupil diameter, averaged across the left and
right eye. Because increases in pupil diameter are positively associated with greater cognitive
effort under luminance-controlled conditions, values were expressed as a percent change from
baseline to enhance comparability across participants. Situational awareness was evaluated
through the relative visual entropy across the monitor panel and within the regions of interest
(ROIs) of the USAARL MATB interface, providing an index of attentional distribution. Finally,
trust in automation was inferred from dwell time on subtasks under automated control. These
values were reverse-coded, such that greater monitoring of automated subtasks reflected lower
trust, indicating that operators felt the need to visually verify system behavior rather than
delegate confidently.

Subjective scales.

A standard demographics survey and the Karolinska Sleepiness Scale (KSS) were
administered prior to task engagement. The KSS is a widely validated, single-item measure in
which participants rate their current level of sleepiness (Kaida et al., 2006). Scores on the KSS
reflect momentary daytime sleepiness, with higher values indicating greater subjective
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sleepiness. Several standardized questionnaires were also administered to assess perceived
cognitive workload, situational awareness, and trust in the automation system used in the study.

CWL scales.
Instantaneous Self-Assessment (ISA) Scale.

During the USAARL MATB simulation, operators were prompted every 30 seconds to
provide a subjective workload rating on a 1-10 scale. Each prompt was signaled both visually,
via a light on the GUI, and auditorily, via a 1000 Hz tone. Operators entered their responses
using the on-screen sliding scale, selecting the desired value with the mouse. The software
automatically recorded both the chosen rating and the associated response time. If no response
was provided within 10 seconds, the prompt timed out and the omission was logged. Prior to the
experiment, operators were introduced to the ISA scale during training to ensure familiarity with
the 1-10 anchors. This preparation minimized the need for external reference during task
performance, thereby reducing intrusiveness of the measure.

NASA-Task Load Index (NASA-TLX).

The NASA-TLX is a widely used multidimensional questionnaire designed to assess
perceived workload across six domains: mental demand, physical demand, temporal demand,
performance, effort, and frustration (Hart & Staveland, 1988). Each dimension is rated on a 100-
point scale, and the scores are averaged to yield a composite workload index in addition to the
six individual subscale scores. In the present study, the NASA-TLX was administered following
each block of the USAARL MATB simulation to capture participants’ retrospective assessment
of task demand. Importantly, the NASA-TLX is not suitable for administration during task
performance, as the multi-item scale is time-intensive and would substantially disrupt ongoing
performance if embedded within the task. Thus, post-task administration allowed for
comprehensive workload assessment without interfering with operators’ real-time task execution.

SA scales.
Situation Awareness Global Assessment Tool.

The Situation Awareness Global Assessment Technique (SAGAT) was used to provide
an objective assessment of operator situational awareness during task performance (Endsley,
1988). Unlike many situational awareness measures that are administered post-task, where
responses are vulnerable to recall errors and bias, the SAGAT was embedded directly within the
USAARL MATB simulation. During each trial, the simulation was randomly frozen at pre-
specified intervals, and operators were presented with queries targeting their current awareness
of the task environment. These queries spanned all three levels of Endsley’s model of situational
awareness, perception, comprehension, and projection.

For example, perception-level queries asked operators to identify immediate system
states such as, “What is your current system monitoring light configuration?” Comprehension-
level questions probed understanding of the broader context, such as, “Which tasks were
automated at any point over the previous round?” Projection-level items required operators to
anticipate future events, such as, “How many seconds until the next subjective workload
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prompt?” Operators responded using a mouse to select or enter answers via the simulation
interface.

Responses were automatically recorded and scored against the actual system state at the
time of the query, yielding objective indices of situational awareness. Scoring was normalized
between 0 and 1, either as a percent correct (for categorical queries) or percent deviation from
the true value relative to task performance window thresholds (for continuous metrics). By
pausing the simulation and querying awareness in real-time, the SAGAT provided a direct,
unbiased measure of perception, comprehension, and projection, ensuring that all three levels of
situational awareness were captured during task performance.

Situational Awareness Rating Technique.

The Situational Awareness Rating Technique (SART) is a self-assessment technique
designed to measure an operator’s level of SA (Taylor, 2017). To capture key features of
situational awareness, the items were generated by presenting scenarios to aviators and having
them identify features of situational awareness that were pertinent to two of the three scenarios.
The three primary factors are: 1) demands on attentional resources, 2) the supply of attentional
resources, and 3) the operator’s understanding of the situation. These factors correspond to
perception, comprehension, and projection, respectively. In this study, the 10-item SART using a
7-point Likert scale was administered upon completion of each testing condition.

Trust in Automation Scales.
Adapted Propensity to Trust in Technology Questionnaire.

The Adapted Propensity to Trust in Technology Questionnaire (APTQ) was used to
measure each participant’s baseline tendency to trust automation (Jessup et al., 2019). The APTQ
is a six-item instrument developed specifically to assess propensity to trust automated systems,
building on earlier, more general trust-in-technology measures. It has demonstrated strong
reliability and predictive validity for both perceived trustworthiness of automation and
behavioral reliance on it (Jessup et al., 2019). Participants rated their agreement with six
statements about automation (e.g., “Generally, I trust automated systems”) on a 5-point Likert
scale ranging from 1 (strongly disagree) to 5 (strongly agree). The APTQ was administered prior
to any interaction with the USAARL MATB tasks or automation features to capture dispositional
biases. These scores were then used as a covariate by regressing trust outcome measures onto
APTQ scores, thereby residualizing dispositional trust and isolating state-based trust effects
attributable to the experimental manipulations.

Trust of Automated Systems Test.

The Trust of Automated Systems Test (TOAST) was used as a 9-item scale to assess trust
in automation (Wojton et al., 2020). Each item was rated on a 7-point Likert scale. The TOAST
was originally developed to capture three theorized foundations of trust identified in earlier
literature—purpose, performance, and process (Lee & Moray, 1994; Lee & See, 2004).
However, confirmatory factor analysis supported a two-factor solution, resulting in subscales for
system performance and system understanding. The scale has demonstrated strong concurrent
validity with existing trust measures and has been validated across both military and civilian
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contexts (Wojton et al., 2020).
Procedure

Participants completed informed consent, eligibility screening, and baseline surveys
(demographics, APTQ, Karolinska Sleepiness Scale). Then, the participant was instrumented
with the Polar H10 device and the GP3 eye-tracking system, following standard operating
procedures. Physiological data were recorded throughout the remainder of the task (i.e., during
baseline, training, and testing condition blocks). A 5-minute resting baseline was administered,
split between opaque (first 2.5 minutes) and transparent (last 2.5 minutes) MATB conditions to
control for luminance differences.

Training included instructing the participant on the USAARL MATB subtasks, subjective
workload prompts, and automation procedures. Participants had to achieve > 60% on all subtasks
before proceeding, with up to three training failures permitted before being removed from the
study. Next, participants were trained on VOGL automation displays and handoff mechanisms,
followed by four short practice runs (one per condition).

The experimental phase consisted of four counterbalanced 10-minute MATB blocks
representing the 2 by 2 design (transparent vs. opaque by voluntary vs. forced, as seen in Table
1). During task performance, the USAARL MATB would freeze, color the screen white, and
present the SAGAT questions. Once the SAGAT questions were answered, the USAARL MATB
GUI would appear, offer a count down, and allow the operator to proceed with the simulation.

After each block, participants completed the NASA-TLX, TOAST, and SART. At study
completion, participants were debriefed, compensated, and escorted from the USAARL facility.

Table 1. Experimental Conditions by Transparency and Handoff Method Factors

Voluntary Handoff Forced Handoff
VOGL panel visible VOGL panel visible
Transparent Display + +
automation suggestions forced automation activation
VOGL panel not visible VOGL panel not visible
Opaque Display + +
automation suggestions forced automation activation

Note. Conditions represent a 2 by 2 design crossing transparency (transparent vs. opaque) with
handoff method (voluntary vs. forced).

Data Quality and Statistical Analysis

Prior to hypothesis testing, all physiological and performance data streams were
inspected for quality and completeness. Raw ECG, pupillometry, and eye-tracking data were
visually screened and algorithmically checked for artifacts (e.g., blink-related pupil spikes,
ectopic heartbeats, or tracking dropouts). Segments with signal loss or artifact contamination
were excluded using standard preprocessing routines, and remaining data were baseline-
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corrected relative to each participant’s pre-task resting period. Task performance metrics derived
from the USAARL MATB were verified for consistency against system logs to ensure accuracy
of automation state tagging and handoff events.

To reduce dimensionality and limit Type I error inflation, metrics were grouped into three
construct-specific sets aligned with the study hypotheses: CWL, situational awareness (SA), and
trust in automation. Within each set, principal components analysis (PCA) was applied to
identify latent dimensions and minimize redundancy prior to conducting omnibus tests.

Multivariate analysis of variance (MANOVA) was used as the primary inferential
framework, with transparency, handoff method, and their interaction treated as within-subjects
factors. Pillai’s Trace was selected as the omnibus statistic due to its robustness against
departures from multivariate normality and variance-covariance heterogeneity. Assumption
checks included Mardia’s test of multivariate normality, Mahalanobis distance for multivariate
outliers, and correlation matrices to screen for multicollinearity.

For significant omnibus effects, linear discriminant analysis (LDA) was employed to
derive discriminant functions and visualize separation among factor levels. Leave-one-subject-
out cross-validation (LOSO-CV) and receiver operating characteristic (ROC) area under the
curve (AUC) were used to evaluate classification accuracy and generalizability. Univariate
repeated-measures ANOVAs, corrected with the Benjamini-Hochberg false discovery rate (FDR)
procedure, were then conducted as follow-ups to clarify the contribution of individual measures.

Finally, trust-related outcome variables were residualized against baseline propensity to
trust automation scores to isolate variance attributable to the experimental manipulations rather
than trait-level predispositions. Together, these procedures ensured that subsequent results reflect
reliable, well-calibrated estimates of how transparency and handoff manipulations influenced
CWL, SA, and trust in automation.

Results
Measures

The collected metrics were separated into three sets relative to the hypotheses put forth.
The three groups included clusters of metrics known to change as a function of cognitive
workload, situational awareness, and trust in automation to ensure accurate model development
for each construct. Table 2 details the descriptive data for each group of metrics across the four
conditions. Table 9 compiles the definitions of the multivariate functions derived from these
metric sets for quick reference.

The CWL metric set included a combination of subjective, physiological, and
performance-based measures to capture workload from multiple perspectives. Subjective
workload was assessed using the NASA-TLX composite score (averaged across six subscales)
and the within task-prompted ISA scale. Physiological indices included pupil diameter and heart
rate variability in the low-to-high frequency band ratio. Each physiological metric was baselined
relative to the at-rest baseline recorded prior to the testing session. Task-based performance
metrics included the MATB subtask scores (SYS, TRK, COM, RM), the IMPRINT model-
derived workload estimate (to provide an overall score of the average workload experienced
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throughout the simulation), and a multitasking efficiency coefficient (all of which are standard
output of the USAARL MATB platform). To maintain directional consistency across the set,
metrics where higher raw values reflected improved performance were reverse scored, such that
larger values always indicated greater workload. These included the multitasking efficiency
coefficient and each MATB subtask score. This scoring approach ensured that all measures could
be meaningfully integrated for the multivariate analyses, with higher scores uniformly
representing higher cognitive workload.

The SA metric set was designed to capture perceptual, cognitive, and attentional aspects
of awareness using both direct probes and behavioral indices. Subjective measures included
SAGAT-based perception, comprehension, and projection scores, along with the SART
dimensions of demand, supply, and understanding. In addition, entropy-based eye-tracking
metrics were incorporated, including relative entropy both in general across the visual space and
within ROI, which reflect the consistency and distribution of attentional scanning. Behavioral
efficiency was further indexed by mean revisit rates to the tracking and resource management
subtasks. Because these tasks are high-bandwidth and event-driven, greater revisit frequencies
were interpreted as reflecting better SA, indicating that operators were actively monitoring
dynamic channels where rapid changes occur. As with other SA measures, higher values
consistently represented improved situational awareness; thus, no reverse scoring was applied
within this set.

This space is intentionally blank.
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Table 2. Descriptive Data from Each Condition Across Metric Sets: CWL, SA, and Trust

Opaque Opaque Transparent  Transparent
X X X X
Metric Forced Voluntary Forced Voluntary
Mean SD Mean SD  Mean SD Mean SD
CWL Metric Set
NASA-TLX 61.09 9.69 61.76 926 6220 992 5988 9.17
ISA Score 542 1.30 4.99 1.28 5.51 1.28 5.18 1.45
Pupil Diameter (% A) 10.03  8.79 8.49 7.77 542 8.02 5.87 9.63
ECG LF/HF (% A) -23.85 43777 -13.58 5296 -13.10 50.55 -15.13 49.95
Multitasking Coefficient” -0.62 0.12 -0.64 006 -0.76 0.11 -0.83 0.04
SYS Score” -63.78 593 -66.56 888 -67.62 628 -673 7.77
TRK Score” -79.02 431 -79.66 4.13 -7930 4.08 -79.88 3.74
COM Score” -47.74 18.12 -61.69 18.31 -40.79 2692 -76.68 22.17
RM Score” -77.48 11.84 -82.69 6.81 -77.67 11.54 -79.12 8.93
IMPRINT 2290 1.17 2466 832 2248 1.64 26.02 848
SA Metric Set
SAGAT: Perception 0.62 0.20 0.51 0.21 0.66 0.13 0.6 0.20
SAGAT: Comprehension  0.70 0.10 0.85 0.08 0.57 0.16 0.82 0.14
SAGAT: Projection 0.21 0.41 0.36 0.21 0.72 0.14 0.54 0.24
SART: Demand 5.18 0.79 5.11 0.81 5.35 0.78 5.19 0.83
SART: Supply 5.83 0.58 5.65 0.83 5.54 0.78 5.58 0.97
SART: Understanding 4.46 0.83 4.22 0.92 4.33 0.89 4.43 0.89
Relative Entropy 0.86 0.01 0.86 0.02 0.86 0.02 0.87 0.02
ROI Relative Entropy 0.64 0.10 0.65 0.11 0.61 0.10 0.67 0.10
TRK Revisit 4.08 1.67 3.19 1.45 3.05 0.78 2.82 1.05
RM Revisit 2.59 1.21 2.24 1.02 2.13 0.83 2.14 0.82
Trust Metric Set
TOAST: Understanding 5.16 1.39 5.10 0.88 4.96 1.12 5.05 0.86
TOAST: Performance 3.87 1.65 4.14 1.55 4.03 1.52 4.24 1.43
Automation Reliance 0.06 0.06 0.15 0.28 0.14 0.10 0.09 0.20
SYS Auto Dwell %" 533 6.62 -138 236 -7.16 400 -427 13.72
TRK Auto Dwell %" -9.00 884 -10.25 890 -14.12 7.50 -9.85 9.88
COM Auto Dwell %" -19.84 10.27 -12.78 17.74 -1443 11.15 -11.01 13.11
RM Auto Dwell %" -18.04 20.83 -12.42 1231 -33.25 2471 -13.59 10.88

Note. Metrics marked * were reverse scored so that higher values consistently reflect a higher
level of the construct (higher CWL, higher SA, or higher trust).

The trust metric set captured both global trust attitudes and subsystem-specific reliance
behaviors during automation. Subjective trust was measured using the TOAST scales for
understanding and performance. Behavioral reliance was calculated as the percentage of time to
which operators deferred to automation versus manual control. In addition, trust calibration was
assessed via dwell time percentages for each subtask, which represented the proportion of dwell
time operators spent monitoring a task while it was automated. Lower dwell times within the
subtask were assumed to correlate with more trust in the system to do its job without being
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actively monitored. Because greater reliance and lower dwell time are indicative of higher trust,
all dwell time metrics were reverse scored so that lower dwell values reflected higher trust. This

ensured directional consistency across the set, with higher scores uniformly representing greater
trust in automation.

Multivariate Analysis - Cognitive Workload

Assumption checks.

Prior to analysis, all dependent variables were examined for multivariate assumptions.
Robust Mardia’s test of multivariate normality indicated no significant skew (skew = 1781.17,
p = 1.00), though significant kurtosis was detected (kurtosis =-21.17, p <.001), suggesting some
departure from multivariate normality. However, no multivariate outliers were identified at the
97.5% Mahalanobis distance cutoff, and no dependent variable pairwise correlations exceeded
|0.90|, indicating the absence of problematic multicollinearity. Together, these results supported
the suitability of the dataset for multivariate analysis of variance (MANOVA), with Pillai’s
Trace selected because it is the most robust multivariate test statistic under violations of

normality and heterogeneity of variance-covariance assumptions (Olson, 1974; Tabachnick &
Fidell, 2019).

Omnibus MANOVA.

To reduce redundancy and limit error inflation, PCA was applied to the 10 selected
workload measures. The PCA retained seven components, explaining 93.6% of the total
variance. A repeated-measures MANOVA was then conducted with transparency, handoff, and
their interaction as within-subjects factors. Results revealed a significant multivariate effect of
transparency on the combined dependent variables, Pillai’s Trace = .35, F(1,23)=12.52,p =
.002, #?=.35. No significant main effect of handoff was found, Pillai’s Trace = .07, F(1, 23) =
1.70, p = .205, ? = .07. However, the transparency x handoff interaction was significant, Pillai’s

Trace = .29, F(1, 23) =9.34, p = .006, n° = .29. Figure 3 depicts the estimated marginal means of
the interaction effect.

Table 3. Omnibus MANOVA Results for Cognitive Workload PCA Set (7 Principal
Components)

Effect Statistic Value F dfl df2 ) N
Transparency Pillai’s Trace  0.35 12.52 1 23 .002 35
Handoff Pillai’s Trace  0.07 1.70 1 23 205 .07

Transparency x Handoff Pillai’s Trace  0.29  9.34 1 23 .006 .29
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Cognitive Workload: Transparency x Handoff
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Figure 3. Transparency and handoff differences in multivariate cognitive workload results
(higher values indicate higher workload).

Linear Discriminant Analysis (LDA).

LDA was performed to identify which metrics had the largest multivariate effect and
determine the classification accuracy (as a percentage of correct classifications and AUC for
ROC:s). For the significant transparency and interaction effects, the leave-one-subject-out cross-
validation demonstrated high classification accuracy for transparency (96.9%, AUC = 0.99) and
good accuracy for the combined condition-level, interaction classification (69.8%, AUC = 0.92;
relative to random chance of 25%).

Transparency functions.

One discriminant function was extracted for transparency. Back-projected PCA-LDA
coefficients confirmed that multitasking efficiency (weight = 5.50), SYS score (4.06), and pupil
diameter (1.06) loaded positively, whereas RM score (-2.65) and ISA scores (-1.58) loaded
negatively. This pattern defines what we termed the efficiency-monitoring function, which
captures operators’ ability to manage concurrent tasks while sustaining vigilance on vision-based
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monitoring tasks, with lower reliance on subjective self-reports of strain. Higher scores on this
function indicate stronger multitasking efficiency and system monitoring coupled with reduced
physiological load. As depicted in Figure 4, classification results revealed that opaque
automation conditions aligned with superior profiles on this function, as operators in the opaque
condition demonstrated higher multitasking efficiency and vigilance with lower self-reported
strain, whereas transparent conditions clustered in the opposite direction. Note that this
discriminant axis is oriented such that higher function scores reflect a more efficient/low-strain
profile, even though individual CWL measures were aligned as higher = higher workload for the
MANOVA. The near-perfect separation of opaque and transparent conditions (AUC = 0.99)
highlights the robustness of this function in distinguishing automation transparency effects on
workload regulation.
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Figure 4. LDA function scores for transparency efficiency-monitoring function.

Condition-level functions.

For the four-level condition classification (transparency x handoff), three primary
discriminant axes were extracted, but only the first two are examined and plotted in Figure 5 for
ease of visualization. The first axis, efficiency-coordination, weighted positively on multitasking
efficiency (-.157), SYS score (.111), and COM score (.049), but negatively on RM score (-.063).
This axis distinguished operators who successfully integrated multitasking, vigilance, and
communication performance from those who faltered under resource management demands.
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Inspection of group centroids (see ‘X’ markers in Figure 5) indicated that the opaque-forced
condition scored highest on this axis, reflecting strong integrated performance, whereas the
transparent-voluntary condition scored lowest, showing breakdowns in coordination and resource
management score balance due to the extra display and decision-making management
requirements of the condition.

The second axis, resource-workload tradeoff, contrasted negative loadings on RM score
(-.056) and COM score (-.104) with a positive loading on IMPRINT workload estimates (.075).
High scores on this axis indicated stable resource management scores despite elevated modeled
workload, while low scores reflected resource management task strain paired with deceptively
low workload predictions. Centroid separation showed that voluntary conditions leaned higher
on this axis, suggesting that voluntary takeovers preserved resource management stability even at
the cost of higher modeled workload. Conversely, forced handoffs trended lower, reflecting
fragile resource management task control despite lighter workload estimates.

These functions (AUC macro = 0.920; Figure 5) provided robust discrimination of the
four condition profiles, with opaque-voluntary emerging as the most favorable overall for
cognitive workload reduction (highest combined scores on LD1 and LD2), transparent-forced as
the least favorable, and the other two conditions diverging depending on whether operator
control (opaque-forced) or resource stability (transparent-voluntary) was prioritized.

Four Condition CWL Metric Discriminant Analysis (LD1 vs LD2)
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Figure 5. Four condition discriminant analysis plot for the CWL metric set. X markers indicate
group centroids.
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Univariate follow-ups.

Follow-up repeated-measures ANOVAs were conducted for each dependent measure to
clarify the source of significant multivariate effects. For transparency, significant effects were
observed for multitasking coefficient, F(1, 23) = 229.34, p <.001, #,°= .92, and SYS score,
F(1,23)=17.97, p =.001, np? = .46. No other performance, physiological, or subjective
measures reached significance after FDR correction. For handoff, the strongest effect was found
for COM score, F(1, 23) =43.38, p <.001, yp?= .65, indicating that communication task
reliance differed reliably across voluntary versus forced handoffs. For the transparency x handoff
interaction, no effects reached significance after FDR correction, indicating that transparency
and handoff primarily exerted independent rather than interactive influences on workload at the
univariate level. No other univariate effects were significant.

Table 4. Repeated-Measures ANOVA Results for CWL Metrics with Benjamini-Hochberg FDR
Correction for Multiple Comparisons

Transparency Handoff Interaction
Measure p (FDR) np’ p (FDR) np’ p (FDR) nyp?
Performance Metrics
IMPRINT .563 .02 244 .10 247 .09
COM Score .563 .03 <.001 .65 .069 24
RM Score 417 .08 .108 .20 247 .10
SYS Score .001 46 479 .04 .069 25
TRK Score .563 .02 479 .04 938 0
Multitasking Coefficient  <.001 92 244 18 247 A2
Physiological Metrics
ECG LF:HF (% A) 102 .06 479 .02 .852 .10
Pupil Diameter (% A) 455 .19 490 .03 247 0
Subjective Metrics
NASA-TLX 765 0 490 .02 317 .07
ISA Score .563 .03 206 13 .852 .01

This space is intentionally blank.
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Multivariate Analysis — SA
Assumption checks.

Multivariate assumptions were first evaluated. Robust Mardia’s test indicated significant
departures from multivariate normality in terms of kurtosis (skew = 1781.31, p = 1.00; kurtosis =
-21.17, p <.001). However, no multivariate outliers were detected at the 97.5% Mahalanobis
distance cutoff, and no dependent variable correlations exceeded |.90|, suggesting the absence of
multicollinearity. The dataset was therefore deemed appropriate for multivariate analysis using
Pillai’s Trace as a metric robust to the multivariate normality violation.

Omnibus MANOVA.

To reduce redundancy among the 10 SA measures, PCA was conducted. Seven
components were retained, explaining 91.9% of the variance. A repeated-measures MANOVA
indicated a significant multivariate effect of transparency, Pillai’s Trace = .29, F(1, 23) =9.60, p
=.005, n?= .29, and a significant multivariate effect of handoff, Pillai’s Trace = .58, F(1, 23) =
31.75, p <.001, n?=.58. The transparency x handoff interaction was also significant, Pillai’s
Trace = .24, F(1, 23) =7.36, p = .012, n? = .24. These results are presented in Table 5 and
depicted in Figure 6.

Table 5. Omnibus MANOVA Results for Situational Awareness PCA Set (n =7 PCs)

Effect Statistic Value F df1 df2 D n’
Transparency Pillai’s Trace  0.29  9.60 1 23 .005 .29
Handoff Pillai’s Trace  0.58 31.75 1 23 <.001 .58

Transparency x Handoff Pillai’s Trace  0.24  7.36 1 23 012 24

: Situation Awareness: Transparency x Handoff
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Figure 6. Transparency and handoff differences in multivariate SA results (higher values
indicate higher SA).
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LDA.

Cross-validated linear discriminant analysis with leave-one-subject-out train/test splits
showed good classification accuracy for transparency (80.2%, AUC = 0.90), handoff (83.3%,
AUC = 0.93), and the four-level condition interaction classification (74.0%, macro/micro AUC =
0.92; relative to chance at 25%)).

Transparency functions.

One discriminant function was retained for transparency. Back-projected PCA-LDA
coefficients indicated that relative entropy (-2.18), SAGAT projection (-2.03), SAGAT
comprehension (+1.28), and TRK revisit mean (+0.99) were the primary contributors, with
smaller effects from SART dimensions and relative entropy ROI. This pattern defines a
projection-comprehension balance function; it distinguishes operators who sustain forward-
looking projection and systematic scanning, paired with comprehension of task states, from those
whose projection deteriorates despite attempts to maintain scanning breadth. The distribution of
scores (as seen in Figure 7) confirmed that opaque automation displays consistently yielded
higher discriminant scores than transparent automation displays, indicating that opacity enhanced
projection and comprehension while supporting balanced attentional allocation. Classification
performance was strong, with an AUC of .90, demonstrating reliable separation of transparent
from opaque conditions.
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Figure 7. LDA function scores for transparency projection-comprehension balance function.
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Handoff functions.

A single discriminant function was extracted for handoff classification in the SA domain.
Back-projected coefficients revealed that SAGAT comprehension (-3.65), TRK revisit mean
(+1.78), and SAGAT perception (+1.62) were the dominant loadings, with smaller contributions
from SART demand, supply, and entropy-based scanning indices. This function, which we label
comprehension-reacquisition, reflects the extent to which comprehension and perceptual
continuity are preserved versus disrupted during transitions. Voluntary handoffs yielded more
negative function scores, consistent with stronger comprehension and more frequent revisits to
dynamic subtasks, while forced handoffs clustered positively, indicating that comprehension was
degraded and had to be reacquired after the system took control. The ROC analysis confirmed
robust discrimination between voluntary and forced conditions (AUC = 0.93), emphasizing that
SA during transitions hinges on whether operators are permitted to anticipate and manage the
handoff or are forced to rebuild understanding afterward.
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Figure 8. LDA function scores for handoff comprehension-reacquisition function.
Condition-level functions.

For the four-level condition classification (transparency x handoff), two primary
discriminant functions emerged that accounted for the majority of discrimination among
conditions (overall classification accuracy = 73.9%, macro AUC = .921). The first axis (x-axis;
LD1) reflected a comprehension-perception tradeoff, distinguishing conditions where deeper
comprehension of system state was preserved versus those that relied more on surface-level
perceptual cues. Positive loadings for SAGAT comprehension (+0.148) contrasted with negative
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weights for SAGAT perception (-0.063) and TRK revisit mean (-0.046), indicating that higher
LD1 scores corresponded to conditions supporting richer comprehension and more stable
monitoring strategies. Lower scores, in contrast, suggested fragmented perceptual monitoring
with reduced revisiting of dynamic subtasks.

The second axis (y-axis; LD2) captured a projection-attention balance, emphasizing
forward-looking situational awareness and systematic attentional distribution. Strong positive
weightings for SAGAT projection (+0.107) and relative entropy (+0.064), combined with a
negative contribution from TRK revisit mean (-0.070), indicated that higher LD2 values reflected
conditions fostering future-oriented awareness and balanced scanning. Lower values suggested
more reactive strategies, with attention distributed unevenly across subtasks.

These two functions highlight that opaque displays and forced handoffs were associated
with richer comprehension and projection-oriented awareness, whereas transparent or voluntary
handoff conditions shifted operators toward more fragmented and reactive monitoring patterns.
Note that the condition ordering here reflects multivariate discriminant space (LD1-LD2); it may
differ from omnibus MANOVA or univariate ANOVA SA effects that emphasized voluntary
handoffs for preserving comprehension.

Four Condition SA Metric Discriminant Analysis (LD1 vs LD2)
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Figure 9. Discriminant space plot for SA metric discriminant analysis across conditions. X
markers indicate group centroids.
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Univariate follow-ups.

Follow-up repeated-measures ANOVAs, corrected for multiple comparisons using the
Benjamini-Hochberg FDR procedure, clarified the sources of these multivariate effects (Table
6).

For transparency, significant effects emerged for relative entropy, F(1, 23) =29.91, p <
.001, yp?=.55; SAGAT comprehension, F(1,23)=11.95, p =.006, yp>=.35; SAGAT
projection, F(1, 23) =34.98, p <.001, yp?=.62; RM revisit mean, F(1, 23)=7.42, p = .025, np°
=.24; and TRK revisit mean, F(1, 23) = 10.48, p = .009, np? = .32.

For handoff, the strongest effect was observed for SAGAT comprehension, F(1, 23) =
38.09, p <.001, np? = .63. Additional significant effects included relative entropy ROI, F(1, 23)
=6.47, p =.020, yp? = .28; TRK revisit mean, F(1, 23) = 6.40, p = .020, np? = .27; and SAGAT
perception, F(1,23)=6.12, p =.020, np? = .27.

The transparency x handoff interaction reached significance for relative entropy, F(1, 23)
=6.67, p =.042, yp? = .21; relative entropy ROIL, F(1, 23) =7.02, p =.042, np? = .23; SAGAT
comprehension, F(1, 23) =5.22, p =.042, yp? = .21; SAGAT projection, F(1,23)=12.72,p =
012, yp?=.33; and RM revisit mean, F(1, 23) =7.09, p = .042, np? = .25.

Overall, these results indicate that opaque displays most consistently enhanced
projection, comprehension, and monitoring, whereas handoff effects were concentrated in
comprehension and revisit behavior, with voluntary handoffs yielding superior performance.
Importantly, several interaction effects highlight that the benefits of transparency depended on
the handoff method, particularly for projection and resource management processes.

This space is intentionally blank.
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Table 6. Repeated-Measures ANOV A Results for Situational Awareness Metrics with
Benjamini-Hochberg FDR Correction for Multiple Comparisons

Transparency Handoff Interaction
Measure p (FDR) np’ p (FDR) np’ p (FDR) np’
Entropy Metrics
Relative Entropy <.001 .55 265 .08 042 21
Relative Entropy ROI 706 .01 .020 .28 042 23
Revisit Metrics
RM Revisit Mean 025 24 .079 17 042 25
TRK Revisit Mean .009 32 .020 27 .096 15
SAGAT Metrics
SAGAT: Comprehension 006 35 <.001 .63 042 21
SAGAT: Perception 198 10 .020 27 .605 .02
SAGAT: Projection <.001 .62 .760 0 012 33
SART Metrics
SART: Demand 386 .05 405 .04 73 0
SART: Supply 268 .08 617 .02 372 .05
SART: Understanding 742 01 .662 .01 222 .10

Multivariate Analysis — Trust in Automation
Assumption checks.

Multivariate assumptions were assessed prior to analysis. Robust Mardia’s test indicated
significant departures from multivariate normality in terms of kurtosis (skew = 1778.50, p =
1.00; kurtosis =-21.20, p <.001). However, no multivariate outliers were identified using a
97.5% Mahalanobis cutoff, and no dependent variable correlations exceeded |.90|, indicating
acceptable levels of multicollinearity. The dataset was therefore considered suitable for
MANOVA, with Pillai’s Trace selected as the omnibus test statistic given its robustness to
violations of multivariate normality.

Residualization of trust metrics.

Because individuals differ in their baseline propensity to trust automation, raw trust-
related outcome measures were residualized prior to analysis. Specifically, each metric was
regressed on scores from the Adapted Propensity to Trust in Technology Questionnaire (Jessup
et al., 2019), which was administered before any task interaction to assess the participant’s biases
toward automated technology. By residualizing trust outcomes on this measure, subsequent
MANOVA and discriminant analyses isolated the variance attributable to experimental
manipulations of transparency and handoff, rather than preexisting individual differences in trust
in automation propensity. This ensured that observed trust effects reflected task-driven
influences rather than dispositional biases.
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Omnibus MANOVA.

Residualized trust measures (n = 10) were entered into the MANOVA, including TOAST
residuals, automation reliance, and eye gaze behavior metrics. Results showed no significant
multivariate effect of transparency, Pillai’s Trace = .11, F(1,23)=2.98, p =.098, = .11. A
significant effect of handoff was observed, Pillai’s Trace = .34, F(1, 23) =12.10, p =.002, *=
.34. The transparency % handoff interaction did not reach significance, Pillai’s Trace = .10, F(1,
23)=2.46,p=.131, n?=.10. MANOVA results are presented in Table 7 and depicted in Figure

10.

Table 7. Omnibus MANOVA Results For Trust In Automation Metrics Regressed Onto APTQ
Scores

Effect Statistic Value F df1 df2 D n’
Transparency Pillai’s Trace  0.11  2.98 1 23 .098 A1
Handoff Pillai’s Trace  0.34 12.10 1 23 .002 34
Transparency x Handoff Pillai’s Trace  0.10  2.46 1 23 131 10
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Figure 10. Transparency and handoff differences in multivariate trust results (higher values

indicate higher trust).
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Linear discriminant analysis.

Cross-validated LDA achieved a classification accuracy of 74.0% for the significant main
effect of handoff, with an area under the ROC curve of AUC = 0.845. One discriminant function
was retained, dominated by automation dwell-time measures. The strongest contributors were
resource management dwell time (d = .67), system monitoring dwell time (d = .43), and
communications dwell time (d =.39). Smaller but still meaningful influences came from
automation reliance (d = -.27), tracking dwell time (d = .17), and TOAST performance (d =.16).
The resulting discriminant function score distributions are depicted in Figure 11.

This discriminant function captured the degree to which trust behaviors aligned with
automation use by contrasting genuine reliance with inflated, forced reliance. High scores
reflected conditions in which operators continued to dwell extensively on automated subtasks
despite high automation usage, a pattern indicative of mistrust. Low scores, in contrast, reflected
reduced monitoring of automated subtasks when automation was engaged, consistent with
increased trust.

In practice, voluntary handoffs were associated with lower scores on this axis, as
operators reduced dwell time on automated subtasks and demonstrated trust that the automation
could function without constant oversight. Forced handoffs, however, clustered at higher values,
where automation reliance was inflated by design, but operators still devoted significant
monitoring effort, undermining the calibration of trust. Thus, this reliance-monitoring
Calibration function shows that voluntary handoff produced more authentic trust behaviors,
whereas forced handoff yielded a mismatch between automation use and operator confidence.
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Figure 11. LDA function scores for handoff reliance-monitoring calibration function.
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Univariate follow-ups.

Follow-up repeated-measures ANOVAs were conducted to explore individual variables.
For handoff, only significant effects emerged for RM auto dwell %, F(1, 23) =9.76, p = .049, np?
= .28, after correction. No transparency main effects were significant. The transparency x
handoff interaction did not yield significant univariate effects.

Table 8. Repeated-Measures ANOVA Results for Trust in Automation Metrics with Benjamini-
Hochberg FDR Correction for Multiple Comparisons

Transparency Handoff Interaction
Measure p (FDR) np’ p (FDR) np? p (FDR) np?
Reliance Metric
Automation Reliance 747 0 475 .04 121 22
Gaze Metrics
COM Auto Dwell % 262 A1 101 .19 727 .02
RM Auto Dwell % 211 17 .049 .28 121 18
SYS Auto Dwell % .266 .09 153 14 .843 .01
TRK Auto Dwell % 211 14 .638 .02 257 .09
Subjective Metrics
TOAST: Performance 321 .06 404 .06 .853 0
TOAST: Understanding ~ .321 .05 .886 0 727 .02
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Table 9. Discriminant Function Names, Definitions, and Loadings by Metric Set

|Name

I |Deﬁniti0n

||Primary Loadings

Cognitive Workload

Transparency:
Efficiency-Monitoring

Captures operators’ ability to manage concurrent tasks while sustaining vigilance on vision-based monitoring.
High values reflect strong multitasking efficiency and system monitoring, with lower reliance on self-reported
strain.

MTC (+5.4), SYS (+4.0),
RM (-2.6), ISA (-1.6)

Condition LD1:
Efficiency-Coordination

Distinguishes operators who integrate multitasking, system monitoring, and communication performance
against those faltering in resource management. High values indicate integrated performance; low values
reflect breakdowns in coordination.

MTC (+.157), SYS (+.111),
COM (+.49), RM (-.63)

Condition LD2:
Resource-Workload Tradeoff

Captures the tension between resource management demands and modeled workload. High values reflect
stable resource management with moderate workload; low values indicate resource strain despite relatively
low modeled workload estimates.

RM (-.56), COM (-.104),
IMPRINT (+.075)

Comprehension Balance

allocation, allowing operators to sustain deeper situational models.

Situational Awareness
Transparency: Differentiates conditions by emphasizing forward-looking projection and systematic scanning versus 1;2(}]/3\1}[“}213 ((__22 '(}2883))’
Projection- degraded comprehension. Transparency supports both projection of future states and balanced attentional ) ;

SAGAT Comp (+1.128),
TRK Revisit (+0.993)

Handoff:
Comprehension-Reacquisition

Captures the degree to which comprehension and perception of system state are preserved or disrupted during
control transitions. Voluntary handoffs preserve comprehension and revisit frequency, whereas forced
handoffs undermine integration, requiring operators to reacquire understanding.

SAGAT Comp (-3.648),
TRK Revisit (+1.784),
SAGAT Per (+1.618)

Condition LD1:
Comprehension-Perception
Tradeoff

Distinguishes conditions where comprehension is dominant from those where reliance shifts toward surface
perception with reduced revisiting of dynamic subtasks. This reflects how awareness toggles between
meaningful understanding and fragmented perceptual monitoring across automation conditions.

SAGAT Comp (+0.148),
SAGAT Per (-0.063),
TRK Revisit (-0.046)

Condition LD2: Projection-
Attention Balance

Reflects differences in future-oriented awareness (projection) and systematic attentional distribution (entropy,
revisits). Transparent and voluntary conditions promote projection with balanced scanning, whereas opaque
or forced conditions yield fragmented, reactive monitoring strategies.

SAGAT Pro (+0.107),
TRK Revisit (-0.070),
Rel. Entropy (+0.064)

Trust in Automation

Handoff:
Reliance-Monitoring
Calibration

Differentiates voluntary vs. forced handoff by capturing the contrast between genuine behavioral trust (lower
dwell time on subtasks under voluntary handoff) and inflated automation reliance (forced handoff). Voluntary
handoff was associated with reduced monitoring of automated subtasks (greater calibrated trust), whereas
forced handoff inflated reliance values artificially while eroding genuine trust behaviors.

RM A. Dwell % (.67),
SYS A. Dwell % (.43),
COM A. Dwell % (.39),
Auto Reliance (-.27)
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Discussion

The purpose of this study was to examine how transparency and handoff method, two
foundational features of adaptive automation, jointly influence operator CWL, SA, and trust in
automation. These three constructs represent core determinants of effective human-automation
teaming, yet the ways in which they interact with system design choices are complex and often
yield divergent outcomes. By employing a within-subjects 2 x 2 design, supported by
multivariate analyses and discriminant function modeling, the present work sought to clarify how
transparency and handoff individually shape operator states in a demanding aviation
environment while also exploring their joint interaction.

Across the three assessment domains, the hypotheses received mixed but informative
levels of support, revealing both convergence and divergence in how transparency and handoff
shape operator states. For cognitive workload, transparency emerged as the dominant factor, but
in the opposite direction of the original prediction, transparent conditions significantly increased
workload, whereas opaque conditions reduced strain and supported efficiency-monitoring
profiles. Voluntary handoff did not yield strong workload benefits overall, suggesting that
transparency, not handoff, was the primary workload driver.

For situational awareness, both factors mattered. Opaque displays enhanced
comprehension, projection, and attentional distribution, while voluntary handoff preserved
comprehension and mitigated the disruptive effects of transitions. Together, these findings show
that SA is best maintained when opacity is paired with user control (i.e., voluntary handoffs).

For trust, handoff was decisive. Voluntary transitions significantly enhanced reliance and
trust behavior (automation reliance and reduced automated subtask monitoring) across
subsystems, whereas transparency did not produce reliable trust gains.

These patterns indicate that transparency primarily regulates cognitive load and
attentional balance, handoff governs the relational dynamics of trust, and situational awareness
emerges at their intersection. The strongest outcomes were not achieved under transparency, but
rather when opaque displays were paired with voluntary handoffs, which consistently produced
favorable operator states across workload, SA, and trust. Conversely, the transparent-forced
combination undermined performance across multiple constructs, while the mixed conditions
revealed tradeoffs depending on which factor dominated. This pattern of results is illustrated in
Figure 12, with the main effects summarized in Table 10 alongside corresponding design
recommendations, and the exploratory interaction findings detailed in Table 11. These findings
highlight that adaptive automation design must avoid privileging one construct at the expense of
others.

35



Table 10. Summary of Results Relative to Hypotheses (H) 1-6

Hypothesis Factor Level Observed Change Design Recommendations

Transparency

HI: CWL Transparent Tp=.002,7°=.35 X Avoid continuous transparency in
high-demand phases; use opaque
displays operationally

H2: SA Transparent | p=.005,7°=.29 X Avoid persistent confidence
readouts; provide transparency only on
demand

H3: Trust Transparent xp=.098,n’=.11 A Transparency alone does not build
trust; combine with reliability cues and

voluntary handoffs
Handoff Method
H4: CWL Voluntary xp=.205,17=.07 A No strong workload benefit, but v
retain voluntary handoff for flexibility
H5: SA Voluntary Tp<.001,7*=.58  Always prefer voluntary handoff;
preserves comprehension/projection
H6: Trust Voluntary Tp=.002,7°=.34  Adopt voluntary/autonomy-by-
consent handoffs to foster calibrated
reliance

Table 11. Summary of Exploratory Interaction Effects Between Transparency and Handoff
Method

Transparency Handoff

Level Method  Level Design Recommendations

CWL (p =.006, n°=.29)

Transparent Voluntary i A\ Use only in training/rehearsal; elevates workload in
operations

Transparent Forced ! X Short-term CWL benefit but harms SA, do not
deploy operationally

Opaque Voluntary 1 v Best pairing for workload reduction and agency; set
as default

Opaque Forced I A Lowers CWL but X harms trust, limit to emergency
overrides

S4Ap=.012,n*= .24

Transparent Voluntary i A\ Useful in training/low tempo, selective use only

Transparent Forced ! X Worst-case, avoid entirely

Opaque Voluntary 1T/ Optimal, supports projection and comprehension

Opaque Forced ~ A Neutral but weaker than voluntary, secondary

option only
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1. Opaque-Voluntary: The optimal profile. CWL decreased, SA improved across all facets:
higher comprehension, stronger projection, and balanced scanning (entropy and revisits).
Trust also increased, with voluntariness preserving reliance and limiting unnecessary
monitoring.

2. Transparent-Voluntary: CWL increased due to transparency’s attentional costs, but SA
improved in comprehension and projection. Attentional balance was maintained at
moderate levels, with voluntariness buffering strain. Trust also rose, as voluntary handoffs
sustained calibrated reliance despite workload elevation.

3. Opaque-Forced: Opacity lowered workload and partially supported SA by preserving
projection and some scanning balance. Comprehension declined under forced handoffs,
requiring reacquisition. Trust dropped, with forced transitions eroding reliance despite
efficiency gains.

4. Transparent-Forced: The poorest profile. SA declined across comprehension, projection,
and visual scanning, with fewer revisits to dynamic subtasks. Trust also fell, as operators
over-monitored automation under reduced agency. Workload was also lower relative to
the transparent-voluntary condition and in-line with the other conditions.

Figure 12. Summary of operator states across a 2 x 2 design crossing transparency (transparent
vs. opaque) with handoff method (voluntary vs. forced).
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Cognitive Workload

The CWL results demonstrate that transparency was the dominant determinant of
workload regulation, but in the opposite direction of expectations. Rather than reducing
workload, transparency significantly increased strain, while opaque conditions supported better
multitasking efficiency, system monitoring, and overall vigilance. This finding directly
contradicted H1 and suggests that providing continuous system visibility may impose additional
attentional and coordination costs in high-demand supervisory control settings.

By contrast, handoff method alone did not significantly alter workload, offering only
partial support for H4. Still, its influence was evident in certain subtasks. Voluntary handoffs
preserved resource management stability, while forced handoffs disrupted coordination in
communication-heavy domains. Thus, transparency drove global workload differences, while
handoff shaped how those effects were distributed across tasks.

These results diverge from classic predictions that transparency should reduce uncertainty
and thereby lower workload (Kaber & Endsley, 2004; Wickens, 2002). Instead, they align with
more recent critiques of the “transparency paradox.” Explanatory content can clarify automation
logic but simultaneously increase cognitive load when delivered during complex, time-sensitive
tasks. The exceptionally strong effect on multitasking efficiency (p? = .92) further reinforces
that excessive transparency undermines operators’ ability to coordinate across subtasks, a critical
competency in aviation and other multitasking domains.

From a design perspective, these findings suggest that opaque displays should be
prioritized during high-demand operational phases (e.g., degraded visual environments, high
communication load), where reducing strain and supporting vigilance is paramount.
Transparency may still have value, but primarily in training, mission rehearsal, or on-demand
contexts, where attentional costs are less consequential and explanatory cues can be leveraged
for learning. Handoff design remains secondary but important. Voluntary transitions should be
the default, as they help preserve coordination, while forced overrides should be reserved for
emergencies.

In sum, the CWL results reveal that transparency increased workload rather than reduced
it, while opacity enabled more efficient multitasking and monitoring. Voluntary handoffs offered
localized benefits but could not offset the elevated workload induced by transparency. These
findings refine workload theory by showing that context, task demand, and timing determine
whether transparency alleviates or exacerbates operator strain.

Situational Awareness

The SA results show that both transparency and handoff method strongly influenced
awareness, but with different roles. Transparency increased attentional strain, such that opaque
displays yielded higher comprehension, projection, and balanced scanning, while voluntary
handoffs preserved continuity of comprehension during transitions. The large effect sizes
associated with handoff highlight that transition quality is the primary determinant of SA
preservation, consistent with Endsley’s (1995) model that awareness is most fragile at control
transfer points.
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The second hypothesis, that transparency would improve SA, was not supported; instead,
opaque displays provided clearer scaffolding for comprehension and projection while transparent
displays primarily shaped scanning (entropy/revisits) without delivering net SA gains. The fifth
hypothesis, that voluntary handoff would improve SA, was supported, with voluntariness
protecting comprehension and reducing disruption during transitions. Importantly, the interaction
between transparency and handoff showed that the best outcomes occurred under opaque-
voluntary conditions, while the worst outcomes occurred under transparent-forced conditions,
where both attentional load and control disruptions undermined SA.

These findings refine SA theory in several ways. First, they confirm that projection and
comprehension are the most vulnerable levels of SA (Endsley, 1995), and demonstrate that
opacity, by reducing attentional overhead, better supports both. Second, they align with prior
evidence that forced transitions degrade comprehension and projection (Chen & Barnes, 2014;
Wright et al., 2018), while voluntary handoffs allow operators to sustain mental models across
shifts in control. Finally, the eye-tracking results support work linking entropy balance and
revisit frequency to higher awareness (Jones & Endsley, 2004; Pan et al., 2025), showing that
opaque-voluntary conditions fostered systematic monitoring strategies.

From a design perspective, these findings suggest that opaque displays should be the
default in operational phases, where minimizing workload and preserving comprehension are
critical. Transparency can still serve a role in training or low-demand contexts, but operational
systems should instead emphasize voluntary, predictable handoffs that preserve comprehension
and continuity of SA. Eye-tracking indices could also serve as real-time triggers for adaptive
display management, detecting when SA begins to degrade and delaying or adjusting handoffs
accordingly.

In sum, the SA results indicate that opacity scaffolds projection and voluntary handoff
preserves comprehension, with the two factors jointly determining awareness outcomes. The
most favorable conditions combined both, while the transparent-forced pairing consistently
undermined SA.

Trust in Automation

The trust results revealed a different pattern than CWL and SA. Handoff quality, not
transparency, was the dominant determinant of trust calibration. Transparency showed only a
weak, nonsignificant trend, whereas voluntary handoffs consistently preserved reliance and
reduced over-monitoring, especially in resource management tasks. This underscores that trust is
shaped less by informational context and more by operators’ perceived autonomy and control
during transitions.

The third hypothesis, that transparency would enhance trust, was not supported. By
contrast, the sixth hypothesis, that voluntary handoff would foster higher trust, was supported,
with voluntariness distinguishing conditions through reliance-based behaviors. This aligns with
theories that describe trust as fundamentally relational, rooted in autonomy, predictability, and
controllability (Lee & See, 2004; Hoff & Bashir, 2015). Operators appeared to interpret forced
handoffs as violations of agency, which eroded trust even when automation performed
competently.
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Behavioral measures such as dwell time on automated subtasks proved more sensitive
than global trust ratings, echoing Dzindolet et al.’s (2003) observation that operators may report
trust but still monitor excessively when trust is fragile. The discriminant analysis highlighted this
distinction through a reliance-monitoring calibration function, where voluntary handoffs were
associated with genuine calibrated reliance (less monitoring), and forced handoffs reflected
inflated reliance paired with persistent oversight.

Condition-level comparisons reinforced this conclusion. Opaque-voluntary and
transparent-voluntary handoffs produced the highest trust, with little difference between them,
while both forced handoff conditions yielded the lowest trust outcomes. This ordering shows that
handoff quality outweighed transparency in shaping trust, distinguishing trust patterns from
CWL (dominated by transparency) and SA (shaped by both factors).

From a design standpoint, these findings indicate that handoff processes should be the
primary lever for trust management. Effective systems should prioritize voluntary, predictable,
and reversible transitions, reserving forced overrides for emergencies. Transparency can
supplement these processes, but it cannot compensate for poor handoff design. Monitoring
reliance behaviors such as dwell time in real-time may allow adaptive automation to detect
erosion of trust and dynamically adjust handoff timing or transparency cues to recalibrate
confidence.

In sum, the trust findings confirm that handoff quality is central to building and
preserving trust, while transparency plays only a supporting role. Trust is relational rather than
informational, dependent on how automation engages operators, not just on what it reveals about
its internal state.

Future Adaptive Automation Design Guidelines

The synthesis of CWL, SA, and trust findings provides clear design guidance for next-
generation adaptive automation systems in Army aviation. Unlike earlier frameworks that
emphasized one construct at the expense of others, the present results show that CWL, SA, and
trust are shaped differently by transparency and handoff method. Effective design must therefore
adopt a multidimensional perspective, ensuring that interventions in one domain do not
unintentionally degrade another.

The first principle derived from this work is that transparency elevates workload under
complex multitasking conditions. Contrary to prior assumptions (Kaber & Endsley, 2004;
Wickens, 2002), continuous transparency increased strain and degraded multitasking efficiency,
suggesting that added contextual cues can overload attention when presented during high-
demand phases (simulated by the high multitasking demand of the USAARL MATB). In Army
aviation, where pilots must manage degraded visual environments, dense communications, and
rapid decision cycles, continuous transparency may act as a cognitive distractor rather than a
resource regulator. Consistent with recent critiques of the “transparency paradox” (Wright &
Barber, 2021; Wright et al., 2020), transparency should therefore be restricted to training,
rehearsal, or on-demand contexts, rather than being the default for full-time operational displays.
For line operations, opaque interfaces with selectively triggered transparency (e.g., query-driven
explanations or phase-selective overlays) are more likely to safeguard workload efficiency.
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The second principle is that handoff voluntariness is the primary determinant of trust.
Forced handoffs consistently eroded calibrated reliance, even when transparency cues were
present, while voluntary handoffs preserved trust regardless of display condition. This highlights
that trust in automation is less about what the system reveals and more about whether the
operator retains agency over transitions (Lee & See, 2004; Hoff & Bashir, 2015). For Army
aviation, this means that automation should operate on an “autonomy-by-consent” basis, where
aircrew initiate or confirm transitions. Emergency overrides using forced control takeover remain
necessary in safety-critical cases (e.g., collision avoidance, loss of control), but systems should
provide clear justifications for forced handoffs and rapid paths for re-engagement.

The third principle is that SA requires coordination between transparency and
voluntariness. Opaque displays supported comprehension and projection by reducing attentional
overhead, while transparent displays primarily shaped scanning strategies and can raise strain
under high tempo tasks such as the USAARL MATB. Voluntariness preserved comprehension
across transitions. Only when opacity and voluntary handoffs were combined did operators
demonstrate optimal awareness, reflected in higher SAGAT scores, balanced gaze entropy, and
revisit behaviors. These findings extend Endsley’s (1995) model by showing that projection is
best scaffolded by display opacity, while comprehension continuity depends on voluntary control
of transitions. For Army aviation, this implies that explanatory cues should be delivered in
synchrony with voluntary handoffs, ensuring that awareness is carried forward seamlessly across
the human-automation boundary.

The fourth principle is that condition-level tradeoffs must be anticipated. As shown in
Tables 10 and 11, intermediate configurations (e.g., transparent-forced, opaque-voluntary)
yielded partial benefits but also significant deficits. Transparent-forced reduced workload in
some subtasks but undermined awareness and trust, while opaque-voluntary reduced workload
and supported trust but did not fully optimize awareness. For Army aviation, this underscores the
need for multi-objective optimization, where transparency and handoff are dynamically tuned to
balance CWL, SA, and trust simultaneously. This approach aligns with recent recommendations
for integrated adaptive automation frameworks (Pharmer et al., 2025).

Finally, the results highlight the importance of dynamic, context-sensitive adaptation.
Operator states fluctuate across mission phases, task demands, and environmental stressors.
Fixed transparency settings or rigid handoff policies are insufficient. Instead, adaptive
automation should employ real-time classifiers based on CWL efficiency, SA indicators (e.g.,
entropy, revisit patterns), and trust behaviors (e.g., dwell time) to guide adjustments. In Army
aviation, this means that during high-tempo phases (e.g., nap-of-the-earth flight or degraded
visibility), systems should default to opaque-voluntary, while in lower-tempo or training
contexts, transparency-on-demand can enhance learning and projection without overloading.

In conclusion, the present findings suggest that the future of adaptive automation in Army
aviation lies in integration rather than isolation of design principles. Transparency must be
carefully phase-selected, voluntariness must be prioritized to preserve trust, and the coordinated
use of both is necessary to sustain SA. Designing systems that dynamically balance these
principles will enhance not only efficiency and resilience but also operator confidence and safety
in high-demand operational environments.
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Limitations

Although the present study offers novel insights into the effects of transparency and
handoff on CWL, SA, and trust in automation, several limitations must be acknowledged. First,
the relatively small sample size of 24 aviators constrains statistical power and limits
generalizability. Larger and more diverse samples would strengthen confidence in the robustness
of the observed effects and allow further examination of potential moderating variables such as
flight experience, age, or propensity to trust automation.

Second, the study employed categorical manipulations of transparency (transparent vs.
opaque) and handoff (voluntary vs. forced), rather than graded or continuous levels. In practice,
transparency and autonomy management often exist on a spectrum, with varying degrees of
system explanation, predictability, and operator control. The dichotomous manipulation therefore
simplifies complex design variables and may not capture the full range of real-world system
behavior. It is likely that the true optimal configuration will fluctuate between individuals and
with various stressors. Future research should explore more granular manipulations that reflect
the continuum of transparency and autonomy.

Third, trust in automation was measured within a relatively short experimental
timeframe. Although residualization on the Adapted Propensity to Trust in Technology
Questionnaire controlled for trait-level trust tendencies, state trust itself may evolve over longer
periods of exposure, shaped by repeated cycles of reliability and performance feedback. The
weak condition-level discriminability of trust observed in this study may therefore reflect its
slower-moving nature. Longitudinal studies are needed to determine how transparency and
handoff jointly influence trust trajectories over extended use as experience with the system is
developed. Additionally, the sample collected for this study was represented by aviators with a
skewed distribution of flight experience, potentially underrepresenting mid-career aviators, as
seen in Figure 13.

This space is intentionally blank.
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Figure 13. Distribution of aviator experience by flight hours.

Finally, although the study leveraged multiple converging measures within each
construct, ecological validity remains limited. The USAARL MATB platform captures important
features of active and supervisory control but does not fully replicate the complexity, stress, or
stakes of operational aviation missions. Additionally, the laboratory environment in which the
USAARL MATB was presented does not simulate the motion artifacts that are common in
applied settings. Translating these findings into applied contexts will require testing in higher-
fidelity simulators, in actual aircraft (in training centers or using our research Black Hawk), and
eventually in field settings.

Conclusion

This study examined how transparency and handoff methods jointly shape CWL, SA, and
trust in automation within a demanding aviation task environment. Multivariate analyses and
discriminant modeling revealed that while these three constructs are tightly interrelated, they
respond to automation design features in distinct yet overlapping ways. Transparency
consistently increased CWL by taxing attentional resources, yet it also shaped aspects of SA by
supporting projection and influencing scanning strategies. Opacity provided more stable benefits
for comprehension and projection, while voluntariness of handoff emerged as the cornerstone of
trust, preserving calibrated reliance across conditions. Together, these patterns highlight that
CWL, SA, and trust are not governed by a single design lever, but by the dynamic interplay of
transparency and handoff.

Across conditions, the rankings revealed that the opaque-voluntary combination was

globally optimal, producing the lowest CWL, the highest SA, and the strongest trust. At the
opposite extreme, the transparent-forced condition yielded the poorest outcomes, with degraded
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SA, diminished trust, and elevated CWL demands. The intermediate combinations highlighted
important tradeoffs; transparent-voluntary preserved trust and bolstered SA but carried higher
workload costs, while opaque-forced reduced workload and partially preserved SA but
undermined trust through abrupt transitions. These findings emphasize that transparency and
handoff are not interchangeable levers; rather, they address different operator needs and must be
carefully balanced.

From an applied perspective, the results point to several design imperatives for adaptive
automation in Army aviation. Transparency should not default to full-time operation, as
continuous displays increase workload under high-demand conditions; instead, transparency
should be phase-selective or on-demand, used primarily in training, rehearsal, or lower-tempo
phases. Handoff mechanisms should default to voluntariness, as operator agency is the hallmark
of calibrated trust, with forced overrides reserved for emergencies and accompanied by clear
justifications. Finally, SA requires coordination between display mode and handoff process;
opacity supports comprehension and projection, while voluntariness preserves comprehension
across transitions. Synchronizing these design features ensures that awareness is maintained even
during dynamic handoffs.

The broader implication of this study is clear, effective adaptive automation is not about
choosing transparency or voluntariness in isolation, but about integrating both within a cohesive,
context-sensitive design philosophy. Transparency influences cognitive strain, voluntariness
governs trust in the system, and awareness emerges when these dimensions are aligned. By
recognizing this interdependence, future adaptive automation can move beyond piecemeal
interventions toward holistic architectures that enhance operator performance and resilience.

The takeaway message is simple yet consequential; automation that explains itself but
seizes control will not be trusted; automation that cedes control but burdens operators with
transparency will elevate workload; and automation that conceals its logic while forcing
transitions will degrade awareness. In short, the future of adaptive automation will not be won by
transparency or autonomy alone, but by learning when to stay opaque, when to yield, and when
to let the human lead.
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Appendix A. Acronyms and Abbreviations

ANOVA Analysis of Variance

APTQ Adaptive Propensity to Trust in Technology Questionnaire
COM Communications Task

CWL Cognitive Workload

df Degrees of Freedom

ECG Electrocardiogram

EEG Electroencephalography

FDR False Discovery Rate

GUI Graphical User Interface

HRV Heart Rate Variability

IMPRINT Improved Performance Research Integration Tool
ISA Instantaneous Self-Assessment (of workload)
KSS Karolinska Sleepiness Scale

LD Linear Discriminant

LDA Linear Discriminant Analysis

LF:HF Low Frequency:High Frequency (band ratio)
LSL Lab Streaming Layer

MANOVA Multivariate Analysis of Variance

MATB Multi-Attribute Task Battery

NASA National Aeronautics and Space Administration
PCA Principal Component Analysis

PVT Psychomotor Vigilance Task

RM Resource Management Task

RMSSD Root Mean Square of Successive Differences
ROC Receiver Operating Curve

ROI Region of Interest

SA Situational Awareness

SAGAT Situation Awareness Global Assessment Tool
SART Situational Awareness Rating Technique

SYS System Monitoring Task

TLX Task Load Index

TRK Tracking Task

UAV Unmanned Aerial Vehicle

UH-60 Utility Helicopter 60 (Black Hawk)
USAARL U.S. Army Aeromedical Research Laboratory
VOGL Virtual Offloading Guidance Logic

np> Partial Eta Squared
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