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Summary

Monitoring and evaluating operators’ cognitive states in real-time using
neurophysiological and physiological signals recorded from wearable multi-sensor systems holds
promise for enhancing flight safety and promoting mission success. However, several key
challenges must be addressed to realize this vision. These include synchronizing signals across
different modalities, implementing robust real-time data cleaning pipelines, developing effective
methods for multi-sensor data fusion, and overcoming computational constraints associated with
real-time processing and model inference. This report synthesizes expert insights gathered
through targeted questions, highlighting potential solutions to these challenges and outlining
strategies for enhancing real-time cognitive state monitoring and performance prediction in
operational cockpit settings.
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Introduction

The U.S. Army’s Future Vertical Lift (FVL) program aims to design airframes with
unparalleled performance capabilities. The FVL program’s innovations, from faster speeds at
lower altitudes to prolonged flights and cutting-edge reconnaissance equipment, promise
enhanced coordination with group forces. However, those advancements come with their own set
of challenges, such as increasing operators’ workload. The increased workload on operators
could lead to potential mishaps, with costs that could soar upwards of $100 million annually, as
past aircraft data suggests (NATO RTO-TR-HFM-162, 2012).

Monitoring in real-time an operator’s cognitive state and performance allows for the
timely detection of conditions in which aviators may be impaired, distracted, or experiencing
elevated stress, thereby enabling intervention by mission planners, supervisors, or automated
systems to prevent accidents and operational failures. Traditional methods, such as self-
assessment of cognitive workload, are often unreliable due to biases and are ineffective during
periods of high cognitive workload when available cognitive resources are low. These challenges
underscore the need for more objective assessment tools. Physiological and neurophysiological
measures, including electrocardiogram (ECG), electroencephalogram (EEG), and functional
near-infrared spectroscopy (fNIRS), provide a promising avenue, as highlighted by various
studies (Caldwell, 2005; Matthews & Desmond, 2002; Saxby et al., 2013; Gao et al., 2025; Li et
al., 2022; Niu et al., 2025). By leveraging these measures, we can objectively assess an
operator’s cognitive state, a process broadly known as operator state monitoring (OSM) (which
may also encompass physiological health, hypoxia, or fatigue monitoring). The long-term goal is
to deploy wearable sensor systems that support real-time cognitive monitoring, inform adaptive
automation, and predict operator performance to help avert potential mishaps in complex flight
environments.

Monitoring human cognitive processes with multiple neurophysiological and
physiological sensors offers a more comprehensive view of brain and body dynamics than any
single modality alone (Li et al., 2022). Modalities such as EEG, fNIRS, ECG, eye tracking, and
other measures each capture distinct but complementary aspects of cognitive states. For example,
heart rate variability (HRV), which measures the time variation between consecutive heartbeats,
is a widely used indicator of autonomic nervous system (ANS) function (Forte et al., 2019). The
high temporal resolution of EEG provides valuable insights into dynamic changes in workload
and fatigue (Diaz-Piedra et al., 2020). When combined, they can provide richer and more
integrated characterization of mental states, such as attention, workload, and fatigue, than when
used in isolation.

However, integrating these data streams and performing real-time OSM in practice
presents substantial challenges. Key among them is the need to precisely synchronize signals
operating on different time scales, the difficulty of performing real-time data cleaning and
analysis (including quality control and adaptive machine learning [ML]) during data recordings,
the development of effective data fusion techniques to combine features extracted from each
modality, and computational demands of processing large volumes of high-dimensional data in
real-time rather than offline. In this report, we examine each of these challenges and outline
current solutions and best practices, drawing mainly on expert insights.




This report is not intended to serve as an exhaustive literature review for each of the
identified challenges, as any one of them could warrant a dedicated review on its own (e.g.,
Dufty & Feltman, 2023; Vogl et al., 2023). Given the number of the topics addressed, a full
literature review for each would exceed the scope of this report and potentially obscure its
practical focus. Instead, we place greater emphasis on expert perspectives gathered in response to
targeted questions designed to address the key issues, while selectively referencing relevant
literature where it directly informs key issues. This approach aims to guide the development of
practical tools and models suitable for real-world OSM applications.

To inform this report, specialized subject matter experts in the research community were
asked to participate in a virtual expert panel. Specifically, highly respected experts were
contacted through email and asked to provide information on best methodological practices. We
include a list of the experts we contacted to generate this report (Table 1), along with the specific
questions asked (Table 2). To protect privacy, individual names in Table 1 have been replaced
with alphabetical letters. All experts consented to publication of their affiliation and expertise as
written. Full, unedited responses are included in Appendix B, organized by questions.

It is worth noting that many of the strategies discussed throughout this report to address
those key issues may not appear as the main focus of journal articles. Instead, they often exist in
the background of successful implementation, shared informally among research teams or
mentioned briefly in method sections of articles. However, these strategies are critical for
ensuring that OSM applications can be safely and effectively deployed in real-world flight
environments.

This space is intentionally blank.



Table 1. Experts Contacted for the Report

Name Affliation Expertise
Department of
Psycholog1p al and Brain Multi-sensor recording,
Dr. A Science neuroimaging, EEG, fNIRS
Drexel University e, ’
USA
Donders Instititue for
Brain an.d. Behavior, EEG, skin conductance, eye
Cognition, and .
Dr.B . movements, and multi-modal
Behaviour recordin
Radboud University £
The Netherlands
EEG, MEG, co-creator of
Meta Reality Labs MNE-python, spearheads
Dr. C (Paris) GPU-accelerated real-time
France source imaging and BCI
pipelines
Berhn MOblle. Pioneer of MoBI + virtual
Brain/Body Imaging . :
. reality (VR) + motion-capture
Dr.D Lab, Technische 4 . .
. fusion, high-density EEG
University . . .
synchronized to kinematics
Germany
N(ejlel?g?;i?; C(if;ét;gz d Founder of FieldTrip toolbox,
Dr. E ne, ! real-time EEG/MEG
University streaming and analysis
Netherlands & Y
: Dep 2 rtment of Biomedical optics, optical
Engineering Technology . .
Dr. F University of Houston bioimaging, wearable health
y technologies, EEG, fNIRS
USA
Simpson Institute for Bio-integrated electronics,
Dr.G Bioelectronics soft materials, and flexible
' Northwestern University biomedical devices,
USA microfluidics
Visual neuroscience and eye
U.S. Army Research tr?ﬁ?ﬁﬁfg and
Dr. H Laboratory naging,
USA neuroergonomics and human-

artificial intelligence (Al)
teaming

Note. MEG = magnetoencephalography, MNE = MEG+EEG analysis and visualization, GPU =
graphic processing unit, BCI = brain-computer interface, MoBI = mobile brain/body imaging.



Table 2. Questions for the Experts

Number Questions
What level of inter-stream temporal error is still acceptable for your
analyses?
5 If you have unlimited resources, what would be your “gold-standard”
synchronization setup look like? Why isn’t it practical today?
3 Which artifacts are still hardest to suppress in real-time without post-
hoc processing?
4 Do you trust real-time quality metrics? Why?
What is the biggest difference between an algorithm that performs
> well offline and one that survives on-device deployment?
6 How do you validate a closed-loop ML model that adapts on the fly?
. How do you handle missing packets or corrupt segments in a long
recording when the study cannot stop?
g What is the best method you’ve seen for ground-truthing multi-modal
physiological streams in the wild?
9 What is the most overlooked privacy, security risk when streaming
raw physiological data wirelessly?
10 Looking five years ahead, which current research question will feel

“resolved” and which challenge will still be with us?

Synchronization Across Modalities

When combining signals like EEG (sampling at 200—1000 hertz [Hz]) with slower signals
like fNIRS or peripheral physiology (often 10-100 Hz), precise time synchronization is essential
(Sun et al., 2021; Uchitel et al., 2021). All sensors must be referenced to a common timeline so
that cognitive events (e.g., a stimulus onset or a blink artifact) align correctly across data
streams. Even slight misalignments can lead to spurious results. For example, an EEG peak
might be paired with the wrong heartbeat or stimulus if clocks drift. As Xiao et al. (2022)
emphasized, accurate timestamp matching is the foundation for multi-modal analyses and for
validating new sensors against gold-standard devices. Without synchronization, accurate
interpretation of relationships between modalities is compromised. Thus, robust synchronization
is a prerequisite for any multi-sensor cognitive study and OSM.

Temporal Resolution and Acceptable Error

Different applications (such as neurofeedback, fatigue detection, BCI, or OSM) tolerate
different amounts of timing error between streams. Many experts maintain that high temporal
resolution brain signals like EEG or MEG should be synced within only a few milliseconds. For
instance, Dr. E suggested that around 5 milliseconds (ms) jitter is the maximum acceptable
timing error for correlating EEG/MEG with other streams. Similarly, Dr. C and others advocate



keeping inter-stream differences below ~10 ms. In experiments examining fast event-related
potentials or stimuli that depend on precise timing (e.g., gaze-contingent events), even 10-20 ms
offsets could blur or drown out the neural effects of interest. On the other hand, slower
physiological trends can forgive a bit more lag. For example, fNIRS signals change over
seconds, so misalignment on the order of hundreds of milliseconds might be acceptable for some
analyses, according to Dr. F. Likewise, aggregated cognitive state metrics (which often average
signals over hundreds of ms) might tolerate on the order of £20 ms timing uncertainty (Dr. A).
The general consensus is to aim for sub-10 ms synchronization error for neuropsychological
signals and try to keep even slower modalities within a few tens of milliseconds alignment. In
specialized cases like aligning EEG with discrete event triggers, sub-millisecond precision is
ideal. These tolerances inform the required rigor of synchronization solutions.

Hardware Synchronization Methods

Hardware-based synchronization remains one of the most reliable approaches for aligning
multi-modal physiological recordings, though implementation varies in precision, cost, and
scalability. A commonly used method involves sending timing pulses or event markers to all
devices through physical trigger lines. For example, a transistor-transistor logic (TTL) pulse can
be delivered simultaneously to EEG, fNIRS, and other systems to mark shared events (e.g., Shin
et al., 2018). This type of synchronization aligns data streams relative to discrete events, such as
stimulus onset or task transitions, but does not provide continuous alignment at the level of
individual time points. In controlled laboratory environments with physically connected
equipment, this approach is low-cost, relatively simple, and sufficiently accurate for many
experimental designs having well-defined and temporally distinguishable events.

A more precise synchronization approach involves the use of a shared clock or
centralized acquisition system to timestamp data across modalities. In such systems, each
physiological signal must be amplified individually, as EEG, ECG, fNIRS, and other modalities
require signal-specific amplification and filtering. The amplified signals are then digitized and
timestamped with a unified acquisition platform that applies a common timing reference. For
example, recent EEG and fNIRS systems have taken advantage of these configurations to
achieve precisely synchronized recordings (e.g., Gao et al., 2025).

While this centralized setup enables precise synchronization at the sample level, it
introduces significant practical limitations. Each sensor requires its own amplification circuit,
and scaling to multiple sensors increases system complexity, cost, and power consumption. For
instance, integrating ten physiological sensors would require ten separate amplification circuits,
which makes the approach cumbersome and difficult to implement in wearable or mobile
environments.

To overcome these limitations, modern synchronization solutions employ distributed
timing protocols over network infrastructure. One such approach involves the use of the
precision time protocol (PTP), where a grandmaster clock is transmitted via Ethernet or optical
fiber to each recording device. This can be combined with a synchronized global positioning
system (GPS) pulse-per-second signal, allowing each device to timestamp data relative to a
shared global reference. This approach enables continuous and highly precise synchronization
across devices, often achieving sub-millisecond or even microsecond alignment (e.g., Lee et al.,



2019). According to Dr. A, such systems represent a gold standard for synchronization by
effectively eliminating clock drift. In addition, network-based synchronization offers greater
scalability and flexibility, making it particularly well-suited for distributed, mobile, or wearable
sensor networks where central wiring is not feasible.

Although the event-based synchronization through trigger pulses offers a simple and
cost-effective method for aligning discrete events, it does not ensure precise time alignment
across data streams. This limitation can be particularly problematic for OSM applications. In
real-world operational environments, operators often engage in complex, continuous tasks that
lack clearly defined start and stop points. Moreover, they may perform multiple tasks
simultaneously, making the event-based synchronization insufficient for capturing the full
temporal dynamics of cognitive and physiological processes. Centralized acquisition systems
provide higher temporal precision but are limited by hardware complexity and poor scalability.
In contrast, a network-based synchronization approach supports precise and continuous
alignment across multiple sensors while maintaining flexibility, making them ideal for real-world
multi-modal data collection.

Software and Network-Based Synchronization

An increasingly popular solution is to synchronize clocks in software over a network. The
Lab Streaming Layer (LSL) (Kothe et al., 2024) is one prominent open-source framework
designed for this purpose. LSL establishes a common time base across devices by continuously
aligning their local clocks, typically by exchanging timestamps and compensating for drift every
few seconds. All data samples from each device are tagged with LSL timestamps that reflect a
globally synchronized clock, with known offset and drift for each stream. This allows disparate
data streams (EEG, ECG, fNIRS, motion sensors, etc.) to be recorded together in a unified
timeline, often saved in a standard format like extensible data format (XDF).

Blum et al. (2021) demonstrated that LSL-based synchronization can achieve temporal
alignment virtually equivalent to traditional wired methods, even in fully mobile setups. In their
tests, multiple Android phones running LSL maintained synchronization within a few
milliseconds while streaming data from multiple sensors. A key advantage of software-based
synchronization is its flexibility. Devices do not require physical trigger lines or shared
hardware. As such, any device capable of connecting to a local network, either wirelessly or
through a wired connection, can join the synchronized data pool.

However, software-based synchronization is not without limitations. Network latency and
clock drift still exist and must be corrected frequently to maintain timing accuracy. LSL
addresses this by defaulting to clock realignment every 5 seconds, and by logging clock offset
correction, which can be used during post-processing to adjust for any residual timing
discrepancies. Other network-based synchronization approaches include Network Time Protocol
(NTP) or PTP on supported devices, but these typically need custom implementation on each
device.

Data security is a consideration when using software-based synchronization over wireless
connections. Researchers must be mindful of potential vulnerabilities when streaming
physiological data. Wi-Fi signals can travel long distances, and if data streams are not encrypted,



sensitive information about participants’ cognitive states or biometric signature may be exposed,
as several experts have pointed out. In adversarial contexts, such information could be exploited
to jeopardize the success of the mission. Therefore, in real-world operational environments,
Bluetooth connections, which have shorter transmission ranges and lower risk of remote
interception, may offer a more secure option for physiological data streaming.

In practice, many laboratories employ a hybrid approach to synchronization. A common
approach involves sending a one-time manual synchronization trigger, such as a flash of light
visible to all sensors or a keypress event, to align the initial start times across devices. Following
this, a software framework, such as LSL or FieldTrip developed and maintained by Dr. E, is used
to continuously adjust for clock drift during recording. Drift correction is critical because even
devices that begin synchronized will slowly diverge over time due to clock frequency
differences.

Software agents that periodically measure clock offsets, as LSL does, or periodic re-
triggering can correct for this drift. The acceptable interval for re-synchronization depends on
how fast drift accumulates. Some high-end systems drift only a few microseconds per minute,
whereas consumer devices might drift several milliseconds per minute. Experts recommend
limiting drift to within a few milliseconds per minute for neural data streams. For example, Dr. A
suggested maintaining drift at or below 5 ms per minute for EEG/fNIRS. These considerations
underscore that synchronization is not a one-time operation but an ongoing process that must be
maintained throughout the entire data collection period.

Emerging and Future Solutions

With unlimited resources, researchers envision synchronization setups that are both fully
wireless and highly precise. Several experts foresee a future where all wearable sensors share a
common wireless clock or timestamp broadcast. For instance, Dr. D suggested that an ideal,
though currently impractical, solution would involve physically connecting all sensors to one
central clock or computer. While such a configuration would ensure perfect synchronization, it
would also severely restrict natural movement and mobility during data collection.

Other experts, such as Dr. G and Dr. A, highlight the potential of next-generation
wireless technologies (such as advanced Bluetooth protocols or ultra-wideband [UWB)) to
achieve sub-millisecond synchronization without the need for physical connections. Indeed, low-
jitter, multi-sensor time synchronization is widely viewed as a challenge on the verge of being
resolved, with prototypes already demonstrating sub-microsecond (<1 ps) accuracy for wearable
devices (Dr. A, looking ahead five years). Advances in miniaturization and the integration of
dedicated clock synchronization chips into wearables are expected to further enhance timing
accuracy.

In the meantime, practical solutions continue to rely on frameworks such as LSL and
creative hybrid approaches that combine hardware triggers, shared video or inertial measurement
unit (IMU) references, and software-based clock alignment. These methods remain essential
tools for ensuring all data streams are temporally aligned.



To complement expert perspectives, we also reviewed the current literature to summarize
methods commonly used in multi-sensor studies, as presented in Table 3.

Table 3. Summary of Synchronization Methods in Current Multi-Sensor Studies

Authors/Year Sensors Synchronization
Method
Al-Shargie et al. (2016) EEG and fNIRS Hardware trigger method
Cao et al. (2021) EEG, EOG, IMU, and pulse Hardware using analog-
oximetor to-digital converter
(ADC)

Deligani et al. (2021) EEG and fNIRS Software timestamp
Gao et al. (2025) EEG and fNIRS Hardware trigger method
Lin et al. (2020) EEG and fNIRS Post-hoc alignment
Shin et al. (2018) EEG and NIRS Hardware trigger over a

parallel port
Smith et al. (2023) EEG, ECG, EDA, and RSP, Hardware and software

eyetracking, and fNIRS
Su et al. (2023) EEG and fNIRS Post-hoc alignment

Online (Real-Time) Data Analysis

Collecting multi-modal data is only the first step; interpreting and acting on it in real-time
presents a far greater challenge. This section examines the difficulties in cleaning and validating
physiological signals as they are being acquired, as well as the deployment of machine-learning
models during ongoing experiments. We also discuss strategies researchers use to ensure data
quality and analytic reliability in online settings, meaning during live data collection, as opposed
to offline settings, where analysis is performed after data collection is completed. Ensuring real-
time signal integrity and model performance is essential for close-loop cognitive experiments
and neurofeedback applications.

Artifacts and Noise in Real-Time

Neurophysiological signals are inherently noisy and prone to contamination by various
artifacts (e.g., Nunez & Srinivasan, 2006). Removing artifacts becomes significantly more
difficult without the benefit of offline processing. Motion artifacts are a prime example. When a
participant moves suddenly, EEG electrodes may shift or an fNIRS optode may momentarily
lose contact, causing large signal disturbances. According to our expert panel, such movement-
related artifacts remain the hardest to suppress in real-time. Dr. E noted that if a sensor loses
touch with the skin even briefly, the resulting data loss or spike is very challenging to correct in
real-time. Dr. D similarly highlighted mechanical artifacts (like cable sway or electrode



impedance fluctuations due to movement) as persistent issues that current real-time systems
struggle to manage. Even environmental noise can pose a serious issue in mobile or field setups.
As Dr. B observed, efforts to increase ecological validity by conducting experiments out of the
laboratory often introduce interference in wearable EEG recordings. Such noise may raise the
“floor” of the signals, making it difficult for real-time algorithms to detect subtle cognitive
effects.

Online systems typically rely on basic filtering and artifact mitigation. These include
high-pass filtering to remove slow drift, notch filtering to remove electrical noise, or
incorporating accelerometer data to partially correct for movement-induced artifacts. While these
methods are effective for handling predictable and stationary artifacts (e.g., removing a 60 Hz
powerline noise, or regressing out linear motion trends), they cannot match the sophistication of
offline methods. Techniques such as independent component analysis (ICA) or artifact subspace
reconstruction (ASR, Mullen et al., 2013) require access to the full dataset and cannot be
executed in real-time. As Dr. A pointed out, certain artifacts can only be cleanly separated with
post-hoc methods (e.g., ICA or general linear modeling) that are not feasible to run in real-time.
For example, when EEG signals are contaminated by muscle activity during speech or chewing,
real-time systems might apply a band-pass filter to attenuate the high-frequency EEG noise, but
they often cannot fully isolate the neural signal of interest until an offline ICA is performed to
remove those muscular artifacts. Similarly, fNIRS signals affected by motion-coupled blood
flow changes might be partly corrected for by an online motion filter, but true separation of
cerebral versus scalp blood signals usually requires an elaborate offline analysis.

In summary, current real-time artifact suppression methods are limited in their ability to
handle complex or transient artifacts. Sudden or episodic movement continues to present a
significant obstacle. Ongoing research in this area includes developing adaptive filtering
algorithms and training machine learning models to detect and remove artifacts during data
acquisition. However, robust and generalizable real-time solutions remain an area of active
investigation.

Real-Time Quality Control (QC) Metrics

One way to manage data quality during an experiment is to monitor signal quality metrics
in real-time. Many modern acquisition systems provide continuous feedback on indicators such
as electrode impedance for EEG, signal-to-noise ratio, or statistical measures like kurtosis that
reflect signal integrity. These metrics can alert the researcher to potential problems, such as a
detached electrode or a sensor saturation. A critical question, however, is whether these real-time
quality metrics can be trusted. Expert opinions on this issue were divided.

Dr. E emphasized that real-time quality checks are only useful if they lead to an
immediate corrective action. For example, if electrode impedance rises above an acceptable
threshold, the experimenter can pause to reattach an electrode. In this sense, such metrics serve
as feedback to enable timely intervention. He also described scenarios in which real-time
monitoring may reveal problems that are not apparent in the recorded data. For instance, an eye
tracker might provide a live video feed that reveals poor calibration or tracking performance
before it becomes evident in the saved gaze coordinates. In such cases, real-time monitoring may
detect issues that offline review of the reduced data might miss.



However, several experts cautioned against over-reliance on these metrics. Dr. D
questioned the robustness of real-time metrics, particularly under variable movement conditions.
Dr. B pointed out that although it is theoretically possible to develop advanced real-time metrics
that differentiate among environmental noise, device-related noise, and physiological artifacts, in
practice many commercial systems provide only simplistic outputs. For example, an EEG
amplifier might report only impedance values, which she finds less reliable than her own visual
inspection of the signals. Dr. F acknowledged that many signal quality metrics are available and
generally sufficient for a quick assessment. Nevertheless, he emphasized that post-hoc analyses
remain essential for interpreting data quality in context and for performing reliable artifact
rejection. Similarly, Dr. A described real-time indices as early warning signals rather than
definitive assessments. These metrics are helpful for detecting obvious failures, such as a
disconnected lead or sensor saturation, but they are limited in their ability to detect subtle
changes or non-stationarities in the data. For this reason, his laboratory always stores raw data
and conducts comprehensive offline diagnostics before drawing conclusions.

In general, real-time quality control (QC) is useful for flagging major issues and, in some
cases, for triggering an adaptive system response, such as adjusting a stimulus or notifying the
participant to stay still, but it cannot replace the depth of offline quality analysis. For truly
critical applications, some experts, including Dr. G, recommended that one should average or
integrate quality measures over longer windows (tens of seconds) to get stable estimates.
Attempting to update quality assessments every second or less often results in noisy and
unreliable metrics. While real-time QC monitoring allows for on-the-spot adjustments and helps
researchers stay informed about the ongoing quality of the data being collected, they remain
cautious and rely on thorough offline review to ensure final data integrity.

Validating Online Machine Learning Performance

A growing number of cognitive experiments now employ closed-loop paradigms, in
which data streams are recorded in controlled environments and analyzed in real-time to adapt
the stimulus or provide feedback (e.g., Chen & Ziegler, 2025). A key challenge in these
experiments is ensuring that the ML models driving these closed-loop systems maintain accurate
performance throughout the session. While validating a model offline using cross-validation is
well established, real-time deployment introduces new complexities. Once a model is operating
online, particularly if it is adapting continuously by learning from incoming data during the
experiment, questions arise regarding how to assess its ongoing performance and prevent issues
such as model drift or the delivery of inaccurate feedback.

The expert discussions have proposed several solutions to this challenge. Dr. A outlined a
multi-faceted approach to verifying the reliability and performance of closed-loop models:

e Shadow mode logging involves running the adaptive algorithm in parallel with a
standard, trusted experiment control system without the model to influence the
live experiment. The model generates predictions or decisions in real-time and
logs them, but the participant experiences a predetermined, fixed sequence of
events. After the session, the model’s logged decisions can be compared to
ground truth labels or expected outcomes. This approach allows researchers to
evaluate how the model would have performed in a real-time setting without
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risking the validity of the live experiment. For example, in a closed-loop attention
task, the adaptive model might determine the optimal moment to present a target
based on EEG activity. In shadow mode, the targets are instead presented at fixed
intervals, while the model’s predicted presentation times are recorded for post-hoc
evaluation.

e Replay benchmarking refers to feeding previously recorded data back through
the model, or through different versions of the model, to audit its behavior. After
a live session, the multi-modal data streams can be replayed through the model
offline, enabling retrospective evaluation of performance. This can be particularly
useful for adaptive models that update themselves over time. By replaying the
same data through the model at different checkpoints, researchers can examine
whether the model’s behavior changed and assess whether any drift or
performance degradation occurred. For instance, by comparing early and late
predictions on the same input data, one can determine whether the model adapted
appropriately or overfit to transient features in the training data.

o Interleaved lock-in trials provide another strategy to monitor model accuracy
during an experiment. These trials involve periodically presenting stimuli with
predictable responses, such as an oddball stimulus that is expected to elicit a
characteristic neural signature. By interspersing these calibration events at regular
intervals within the main task flow, researchers can assess whether the model
continues to respond correctly to well-understood inputs. Because the expected
outcomes of these trials are known, any significant deviations from the correct
detections may indicate that the model’s performance is degrading. This can serve
as a signal to trigger model recalibration, reinitialization, or manual review.

Using these approaches, researchers can increase their confidence in the performance and
reliability of online models. Additional recommendations include the importance of thoroughly
testing the entire closed-loop system in controlled settings before deploying it in more variable or
natural environments. Dr. G advised beginning validation in a tightly controlled environment,
and then gradually transitioning to real-world use. This stepwise approach ensures that the
model’s performance remains robust as experimental conditions become noisier or less
predictable.

Dr. C offered a complementary perspective, emphasizing the value of behavioral
validation. If the objective of the closed-loop system is to enhance user performance, such as
improving reaction times or task accuracy, then one direct measure of model effectiveness is
whether those improvements are observed in practice. In this context, model validation is not
limited to algorithmic metrics but also include measurable improvements in participant’s
behavior.

Ultimately, a model that performs well offline may still fail when deployed in a live
context unless it can handle unpredictable live data streams and operate stably without reliance
on offline fine-tuning. The strategies discussed above provide a practical toolkit for maintaining
scientific validity and experimental reliability when integrating ML into closed-loop cognitive
studies or OSM.
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Data Fusion and Integration

Once data from multiple sensors are synchronized and collected (ideally with minimal
noise), the next challenge is how to combine these multi-modal data to produce meaningful
insights. Data fusion can occur at various stages of the processing pipeline. Researchers might
choose to merge raw signals, extract features independently from each modality and then
combine them or conduct separate analyses and integrate the results at the decision level.
Achieving effective fusion, in which the combined output provides more information than any
individual modality, remains an active area of research (e.g., John et al., 2024).

The figure illustrates a hybrid EEG—NIRS system designed for cognitive state
monitoring. In this configuration, EEG and fNIRS signals are recorded concurrently to capture
complementary neural information. Each data stream undergoes modality-specific preprocessing
and feature extraction before the features are fused into a unified dataset for classification or
inference. EEG contributes features with high temporal resolution, capturing rapid neural
oscillations or event-related potentials (e.g., Cao et al., 2021), while fNIRS contributes features
with high spatial resolution, reflecting localized hemodynamic changes (e.g., Li et al., 2017). The
goal of this integration is to leverage the strengths of each modality to achieve better accuracy or
robustness in detecting cognitive states than would not be possible using either modality alone.
Multi-modal fusion has the potential to overcome the inherent limitations of single-modality
systems, leading to more precise and reliable interpretation of cognitive states. Successful multi-
modal fusion strategies have been shown to improve classification accuracy in mental workload
and stress detection (e.g., Deligani et al., 2021). In such cases, the fused system not only captures
a broader range of relevant information but also increases resilience to noise or artifacts present
in any single input stream.

Feature
extraction

High-temporal=
resolutionifeatures

Figure 1. Example of a hybrid EEG-fNIRS setup.
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Fusion Strategies (Online and Offline)

Several approaches have been developed to integrate multi-modal sensor data for
cognitive state classification, each differing in where and how the information are combined
(John et al., 2024). These can be broadly categorized into feature-level (early) fusion, decision-
level (late) fusion, and model-level (intermediate) fusion, each with distinct assumptions,
advantages, and implementation challenges.

Feature-level fusion refers to the direct concatenation or combination of extracted
features from each modality into a single composite feature vector that serves as input to a
downstream ML model (Niu et al., 2025; Borghini et al., 2020). For example, one might
compute band-power features from EEG and HRV metrics from ECG, and then concatenate
these into a unified vector to train a classifier that predicts cognitive workload or overload. This
approach retains a rich representation of the multi-modal information and allows the model to
learn potential cross-modal relationships. However, it requires that features from each modality
be well-aligned in time, demanding precise synchronization between data streams. Moreover, the
resulting high-dimensional input space may increase the risk of overfitting and impose
computational burdens, particularly when large numbers of features are involved, or training data
are limited (Sams et al., 2023).

In contrast, decision-level fusion involves processing each modality independently using
separate models or classifiers. The outputs of these models, often probabilities or class
predictions, are then integrated at a higher-level using methods such as weighted voting, rule-
based logic, or ensemble learning techniques (Xefteris et al., 2023). This approach is particularly
advantageous when different modalities have asynchronous sampling rates, variable reliability,
or are prone to missing data. Because each modality’s processing pipeline operates
independently, decision-level fusion is well-suited for real-time applications and modular system
design. However, this strategy may miss complex cross-modal interactions that occur at earlier
processing stages (John et al., 2024).

Model-level fusion, also referred to as intermediate or hybrid fusion, occupies a
conceptual space between early and late fusion. Here, each modality is processed through a
dedicated subnetwork (e.g., a neural network branch) that learns modality-specific
representations, which are subsequently merged within the model (typically at hidden or
intermediate layers) (e.g., Chen et al., 2022). This enables the system to learn rich, joint
representations that capture both intra- and inter-modal relationships. Classical statistical
approaches such as canonical correlation analysis (CCA) and joint ICA exemplify this fusion
strategy by identifying latent components that covary across modalities. More recently, deep
learning architectures have emerged that incorporate model-level fusion via attention
mechanisms, gating modules, or shared latent spaces (e.g., Zou et al., 2024). One prominent
example is the Temporal Fusion Transformer (TFT), which accepts feature-level inputs but
performs learned fusion internally, using a combination of attention and gating layers to
selectively integrate information across modalities and time. Although inputs to the TFT may
resemble those used in early fusion, its internal architecture qualifies it as a model-level fusion
method, as it learns to emphasize cross-modal dependencies during training (Lim et al., 2021).
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Collectively, these fusion strategies offer complementary advantages. Feature-level
fusion is straightforward to implement and can exploit all available data simultaneously but
requires synchronization and dimensionality control. Decision-level fusion offers robustness and
modularity, especially when modalities vary in quality or temporal characteristics. Model-level
fusion, while more complex to implement, offers a principled and flexible way to learn high-
level multi-modal abstractions, potentially improving model generalizability and interpretability.

From a workflow perspective, offline data fusion performed after data collection enables
more complex and flexible operations. Researchers can experiment with tuning parameters,
retrospectively aligning data streams or addressing missing data (e.g., Gao et al., 2025; Deligani
et al., 2021; Li et al., 2017) to get better results. Offline analysis also allows comparisons
between fusion at the feature level and at the decision level, enabling the selection of the
approach that yields better validation accuracy.

In contrast, online fusion during live data acquisition must be computationally efficient
and suitable for real-time processing. This often involves predefined computations that integrate
data streams as they are received. For example, a real-time cognitive load index might be
calculated as a weighted combination of normalized EEG beta power and pupil diameter, using
weights determined in prior offline training. Some online systems can implement heuristic rules.
For instance, an attention monitoring system may require both an EEG marker and an eye gaze
measure to indicate a lapse before flagging users. This approach, a form of decision level fusion,
can improve specificity by reducing false positives.

A central challenge in multi-modal integration lies in the vast design space. Researchers
must determine both how and when to fuse information, and these decisions often depend on
domain knowledge, task requirements, and empirical testing (e.g., Li et al., 2022).

Evaluating Fusion Approaches

It is essential to evaluate whether a multi-modal combination is genuinely effective.
Simply recording multiple data streams is not inherently valuable unless their integration yields
new insights or leads to improved performance on a target task. Dr. D noted that many studies
described as multi-modal still analyze each modality independently. Truly integrated analyses,
where modalities inform and complement one another, remain relatively rare. The overarching
goal is to achieve effective synergy. For example, physiological signals such as heart rate or skin
conductance can be used to contextualize neural activity measured with EEG, or neural signals
can be used to interpret physiological responses.

One straightforward evaluation metric is performance improvement. A critical question is
whether a model trained on combined data predicts cognitive outcomes, such as error rates or
mental workload, more accurately than models based on single modalities. Many studies report
such gains (Lin et al., 2017; Aghajani et al., 2017; Deligani et al., 2021; Chu et al., 2022). For
instance, in mental workload classification, EEG data may offer moderate predictive value, and
fNIRS may also perform moderately well, but their combination can result in significantly higher
accuracy (Lin et al., 2017).
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Beyond accuracy, multi-modal systems offer improved robustness. These systems are
more resilient to noise or data loss in any one channel. If EEG becomes excessively noisy during
a task, complementary signals from ocular or cardiac sensors may still provide sufficient
information to infer cognitive state, allowing the fused output to remain reliable. As Dr. G
observed, redundancy across sensors can also serve as a consistency check. For example, heart
rate can be measured simultaneously using ECG, photoplethysmography (PPG), and
seismocardiography (SCG), such that if one modality fails, the others can provide backup
measurements.

A specialized application of multi-modal integration involves using one modality to clean
or validate another. Dr. F offered a forward-looking example, combining motion data from
wearable IMUs with neuroimaging data to detect and correct motion related artifacts. In this
scenario, the IMU can be used to identify periods of movement, enabling algorithms to remove
or adjust brain signals that are likely contaminated. This form of cross modality support offers a
pragmatic fusion strategy, where one sensor enhances the data quality of another. Although such
corrections are currently performed manually, for instance by visually rejecting EEG segments
that coincide with IMU detected movement, future systems may automate this process in real-
time.

Effective multi-modal data integration presents both a valuable opportunity and a
substantial challenge. It holds the promise of offering a more complete understanding of
cognitive processes. However, this potential can only be realized through careful methodological
design. Best practices emerging from recent research include ensuring precise temporal
synchronization to avoid alignment errors during fusion, reducing each modality to its most
informative features to minimize computational burden, and selecting fusion strategies that
match the specific research or operational objective, whether it involves real-time monitoring or
offline analysis, prediction or exploratory discovery. As Dr. D noted, even within the next five
years, truly integrated multi-modal fusion will likely remain an active area of development.
Continued progress is expected across both statistical and Al methods that aim to process and
learn from complex multi-modal data streams in a unified framework.

Computational Demands: Online vs. Offline Processing

A critical yet often underappreciated challenge in real-time cognitive state monitoring is
the computational burden associated with online processing of multi-modal data. Unlike offline
analysis, which benefits from unlimited time and computational resources, real-time systems
must operate under strict latency and processing constraints. This section compares these two
modes and outlines the implications for algorithm design and deployment in live cognitive
monitoring systems and wearable devices.

Latency and Throughput Constraints

Offline analysis allows researchers to record hours of data and process it at leisure on
high performance workstations or computing clusters. For example, an algorithm that requires
ten hours to analyze a one-hour dataset is acceptable in offline contexts. In contrast, online
processing must keep pace with incoming data in real-time or near real-time. Depending on the
application, this may require output updates every few milliseconds to a few seconds. For
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instance, a brain computer interface that detects lapses in attention may need to update its output
every 100 milliseconds, whereas an offline analysis can afford to average across multiple trials.

This low latency requirement demands algorithmic simplicity and efficiency. As Dr. A
explained, certain advanced methods cannot be implemented online. A Butterworth infinite
impulse response filter with zero phase distortion, for example, requires both forward and
backward processing of the signal and thus access to future data. In real-time, such filters must
be replaced with causal, forward-only alternatives, which may introduce slight delays or reduced
performance. More generally, any method that requires access to the complete dataset, such as
full Fourier transformations or batch model training, must be adapted to support incremental or
streaming computation.

Processing Power and Hardware

Offline computations are typically executed on desktop machines with multicore
processors, large memory capacity, and sometimes graphical processing units. Cloud computing
and high-performance clusters (HPC) are often employed for intensive tasks, such as training
deep neural networks on combined EEG and fMRI datasets. In contrast, online systems,
particularly those deployed on portable or wearable platforms, face significantly greater
hardware constraints. When computations are performed on a laptop or mobile phone during an
experiment, it may compete for CPU cycles with other background tasks and be limited by
battery life.

Embedded processing on sensor devices introduces even tighter limitations. Many
wearable EEG and physiological monitoring devices rely on microcontrollers with restricted
memory and processing capabilities. Algorithm design must therefore be tailored to fit these
constraints. While offline algorithms may load gigabytes of data into memory, real-time systems
typically operate on rolling buffers spanning only a few seconds. Dr. F emphasized that online
device computation often compromises other performance aspects, such as increasing battery
consumption, heat generation, or device weight. To address these issues, processing code must
be optimized using low level programming and efficient libraries and sometimes offloaded to
dedicated hardware such as digital signal processors (DSP).

Algorithm Complexity and Fidelity

Another important distinction lies in the complexity and fidelity of algorithms. Offline
methods are often optimized for maximum accuracy and detail, whereas online algorithms
prioritize efficiency and responsiveness. Dr. E noted that offline analyses produce more complete
and higher dimensional representations, while real-time implementations compress the data into
lower dimensional forms that are easier to handle. For example, a full EEG spectrogram may be
computed offline to characterize cognitive state, while an online implementation might rely on
just one or two frequency band metrics, such as beta or alpha power.

This form of data compression involves a tradeoff between richness and utility. It is often
necessary to reduce the data to compact, informative indices that enable real-time interpretation.
Algorithms must also be explicitly designed to process incoming data in chunks and update
outputs incrementally. Dr. D explained that making an algorithm compatible with streaming
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involves not only algorithmic adjustments but also engineering expertise. Some ML models,
especially those designed for batch processing, require modifications to support online learning
or inference. Simpler models such as moving window classifiers or incremental learners are
often better suited to real-time deployment.

Robustness and Maintainability

Offline analyses are typically conducted in flexible software environments that are easy
to update or modify. In contrast, real-time systems deployed in consumer devices may
implement algorithms in firmware or hardware to improve performance and energy efficiency.
As Dr. B stated, embedding an algorithm in a hardware circuit or firmware can make updates
difficult or impossible, which increases the importance of upfront validation and robustness. On
the other hand, implementing core computations in hardware can improve reliability and ensure
consistent timing, which are critical in closed loop systems.

For example, consider a system that integrates eye tracking and EEG to detect workload
and provide real-time feedback. Offline, one might use a complex pipeline involving
independent component analysis, wavelet decomposition, and deep convolutional networks to
achieve high classification accuracy. However, deploying this pipeline in real-time on a tablet
used by a student would be computationally impractical. Instead, the system might use a
simplified feature set, such as frontal beta power and blink metrics, with a lightweight classifier
such as a linear discriminant function. Although this may result in lower accuracy, the model can
operate efficiently and deliver timely feedback.

As Dr. G observed, handling issues such as motion artifacts in real-time is often
infeasible with limited processing power. In such cases, system designers may need to accept
some loss in accuracy or compensate with well-designed sensors that minimize noise at the
source.

Design Implications

Experts highlighted differences in the design philosophy of offline versus online
algorithms. Offline analyses are often exploratory, designed to extract maximum insight from
data. In contrast, online device algorithms are typically purpose built, streamlined, and tuned for
speed and reliability. Dr. F provided the example of a wearable posture sensor designed to alert
users when they slouch. Such a device must rely on a simple rule-based algorithm that operates
reliably and continuously. Attempting to perform complex diagnostic tasks, such as detecting
neurological disorders, on the same hardware would likely compromise its effectiveness. In these
cases, a hybrid approach known as edge computing may be employed. Basic processing occurs
on the device, while more complex analysis is performed on a remote computer using streamed
data or intermediate results.

When developing algorithms for multi-modal cognitive monitoring, it is essential to
determine whether the end use is offline analysis, online real-time application, or both.
Algorithms intended for real-time deployment should be tested under realistic streaming
conditions. Techniques such as load testing, code profiling, and use of compiled programming
languages are important to ensure responsiveness and reliability. Often, an algorithm developed

17



offline must be re-engineered for deployment. For example, a MATLAB script (MathWorks Inc,
MA) may need to be rewritten in C++ or optimized in Python to achieve the required execution
speed. In some cases, a deep learning model may be used offline to identify key features, while a
simpler logistic regression model is implemented online for efficient execution.

Ultimately, the distinction between offline and online processing reflects a tradeoff
between insight and immediacy. Offline pipelines prioritize comprehensive understanding, while
real-time systems aim to deliver actionable results within strict constraints. Both approaches are
essential. Offline analysis informs theoretical models and system design, whereas online
capability enables practical applications such as neurofeedback, wearable monitoring, and brain
computer interaction. As computational hardware continues to advance, the gap between offline
and real-time capabilities will narrow. In the meantime, careful algorithm design, optimization,
and a clear understanding of system constraints are essential for successful real-time deployment
in multi-modal cognitive monitoring.

Conclusion

Multi-sensor neurophysiological recording offers exciting possibilities for understanding
cognition in realistic settings, but it comes with substantial technical challenges. In this report,
we outlined four key challenges: synchronization, real-time analysis, data fusion, and
computational demands, and surveyed current solutions for each. Synchronization across
modalities is critical to ensure that disparate signals can be meaningfully compared. Researchers
employ hardware triggers and software framework like LSL (Kothe et al., 2024) to achieve
timing precision on the order of milliseconds or better. Online analysis requires robust artifact
handling and clever validation strategies to maintain data quality and model performance during
live experiments, while some progress has been made (e.g., real-time feedback loops and
adaptive QC measures), it remains difficult to match offline data cleaning in real-time. Data
fusion and integration techniques are unlocking the potential of multi-modal insights. Effectively
combining streams (especially in real-time) demands careful feature engineering and still often
falls short of its promise, pointing to an important direction for future research. Finally, the
computational constraints of real-time, online device processing forces a trade-off between
complexity and speed, a reminder that algorithms must be designed with the end-use
environment in mind.

Across these domains, the trend is toward greater integration—integration of multiple
data sources, integration of real-time loops when analyzing offline (through shadow modes or
periodic validations), and integration of algorithm development with hardware capabilities. The
experts predict that some problems, like basic multi-sensor time synchronization, will see
significant improvement in the next five years, thanks to advancing wireless technologies and
standards. Others, like real-time artifact removal in freely moving humans, will likely continue to
challenge us. The pursuit of truly mobile, multi-modal cognitive monitoring will continue to
drive innovation at the intersection of neuroscience, engineering, and data science. By tackling
the challenges outlined here with interdisciplinary approaches, we can study the brain and body
in concert in the real world. This will yield richer understanding of cognitive processes and
enable the use of wearable sensors to monitor operators’ cognitive states in real-time, guide
aircraft automation, and predict performance to help prevent potential mishaps.
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Appendix A. Acronyms and Abbreviations

ADC Analog-to-Digital Converter

Al Artificial Intelligence

ANS Autonomic Nervous System

API Application Programming Interface
ASR Artifact Subspace Reconstruction
BCI Brain Computer Interface

BLE Bluetooth Low Energy

CCA Canonical Correlation Analysis
CPU Central Processing Unit

DSP Digital Signal Processor

ECG Electrocardiogram

EDA Electrodermal Activity

EEG Electroencephalogram

EOG Electrooculography

fNIRS functional Near-Infrared Spectroscopy
FVL Future Vertical Lift

GLM Generalized Linear Model

GPS Global Positioning System

GPU Graphic Processing Unit

HRV Heart Rate Variability

HPC High-Performance Clusters

IEEE Institute of Electrical and Electronics Engineers
ICA Independent Component Analysis
IR Infinite Impulse Response

IMU Inertial Measurement Unit

1/0 Input/Output

LE Low Energy

LSL Lab Streaming Layer

MEG Magnetoencephalography

ML Machine Learning

MoBI Mobile Brain/Body Imaging

NTP Network Time Protocol

OSM Operator State Monitoring

POV Point of View

PPG Photoplethysmogram

PTP Precision Time Protocol

QC Quality Control

RSP Respiration

SCG Seismocardiogram

TFT Temporal Fusion Transformer
TTL Transistor-Transistor Logic
USAARL U.S. Army Aeromedical Research Laboratory
UWB Ultra-Wideband

VR Virtual Reality

XDF eXtensible Data Format
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Appendix B. Experts’ Responses
1) What level of inter-stream temporal error is still acceptable for your analyses?
Dr. A:

This depends on the streams’ sampling rate. For most paradigms target < 10 ms jitter and
<5 ms drift per minute between streams that index fast neurophysiology (EEG, fNIRS Hb O
phase locked tasks, pupillometry, EMG).

Cognitive state metrics (e.g., workload indices) tolerate slightly looser alignment
(£ 20 ms) because we generally aggregate across hundreds of milliseconds.

For event locked evoked responses, especially when fusing EEG with stimulus triggers or
eye blinks, I insist on sub-millisecond trigger precision even if the continuous streams drift by a
few milliseconds over time.

Dr. B:

It really depends on the dependent variable I am interested in (EEG response to fixation
onset: lower temporal error required compared to the correlation between facial expression and
HRYV in a fatigue experiment).

Dr. C:
less than 10 ms

Dr. D:
Generally, if there is a constant delay, we aim at fixing this offline by correcting for it.
For jitter, [ would assume not more than 5 to 10 ms (absolute error)

Dr. E:

I am mostly working with EEG, MEG and intracranial EEG in human participants to
study cognitive processes. For me [ would say this is 5 ms.

Dr. F:

It strongly depends on the nature of the data being collected but, in general, a temporal
asynchrony in the order of hundreds of milliseconds is acceptable for fNIRS/DOT data, and in
the order of a few milliseconds may be acceptable for EEG data. Other physiological data
streams (EKG, respiration, GSR) also have their own features, but I’d say that tens to one
hundred milliseconds could be deemed acceptable (where less is better, obviously).

Dr. G:

~1 millisecond
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Dr. H:

For some data collection, an error under 20-30 ms is acceptable; however, in many of our
studies we’re looking at smaller event related potentials based on gaze-contingent stimuli. For
those, error greater than 10 ms could cause sufficient variability to drown out smaller
components of interest.

2) If you have unlimited resources, what would be your “gold-standard” synchronization setup
look like? Why isn’t it practical today?

Dr. A:

Ideal world:

e Precision time protocol (PTP/IEEE 1588) grand master clock distributed over
fiber to every sensor hub, with hardware level timestamping at ADC sampling,
plus shared PPS (pulse per second) derived from GPS to eliminate drift.

e Redundant trigger lines (TTL) and optical isolators for fail safe.

e Central ledger that logs clock skew estimates in real-time so software can
dynamically resample.

Why it’s impractical today:

e Wearable sensors run on BLE and/or limited chipsets that lack deterministic
timestamping.

e Fiber or PPS cabling negates mobility and ecological validity.

e Sub ps hardware clocks inflate power draw and cost; most head worn devices can
spare only a few milliwatt (mW) for timing.

To account for these limitations and improve on the existing solutions, actually, we have
developed a hardware solution in my lab. I have advised three different master theses over the
years (listed below) as we iterated it.

MS theses that I advised for the hardware solution that we call NeuroHub and its
evolution:

Grzeczkowski, N. V. (2014). NeuroHub: Portable and scalable time synchronization
instrument for brain-computer interface and functional neuroimaging research [Master’s Thesis,
Drexel University].

Thomas, N. (2017). NeuroHub networking integration: Time synchronization device for
multi-modal brain imaging and hyperscanning research [Master’s Thesis, Drexel University].

Dai, A. G. (2021). NeuroHub fog: Wireless network time synchronization device for
multi-modal brain imaging and hyperscanning research [Master’s Thesis, Drexel University].
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Dr. B:

The gold standard synchronization setup is very achievable by means of widely supported
Lab Streaming Layer (LSL) framework and attainable networking equipment. I have been
working with LSL since it was published about 6—7 years ago now and my gold standard would
be every experiment apparatus out-of-the-box supporting it.

Dr. C:

Stream sync should be done directly on the sensing hardware to avoid network latencies.
Timestamp alignment between streams will always have failure modes.

Dr. D:

All tethered to one PC—mnot practical as it won’t allow naturalistic movements of
participants in most of the hardware settings we use and/or the devices that allow mobile
recordings cannot be tethered

Dr. E:

Parallel port type of cable with TTL level signals. Well, that is the old-fashioned way that
works robustly in lab settings... Perhaps with unlimited resources I would want to use parallel
optical fibers in the same way as TTL signals over a multi-core cable, or possibly serial
communication over a single fiber with parallel TTL interfaces on both ends. The length of the
fiber would not be a problem and there is no electromagnetic interference. That makes it
compatible with EEG, MEG, fMRI, but also in harsh and less controlled environments like a
clinical setting.

I can think of a few different reasons why it is not practical:

The parallel cable is not practical because digital communication between devices (and
chips) has switched to serial. Serial-over-USB is the standard and Arduino-like devices are
needed to get triggers from button-boxes and to amplifiers.

Regarding optical fibers, lab support staff can manage a soldering iron and an
oscilloscope, but optical interconnections are harder to implement, test, and maintain in an
environment where the setup needs to be flexible (like a research lab, where very regularly new
equipment needs to be incorporated into the setup).

Parallel TTL signal is also not practical as it limits the representation of information that
can be conveyed to numbers, often between 1-255 or 1-(2°16-1). Coding of more complex
information (for example, where on the screen did what stimulus appear?) requires numeric
sequences of trigger codes, whereas more flexible representation (as allowed in the BIDS
events.tsv or with HED tags) is more practical.

Labs are getting more complex and wired setups are hard to implement and maintain.

Wireless allows for more flexible lab setups. LSL over Wifi allows for that, but sometimes we
also use ZeroMQ (Zero Message Queue).
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Dr. F:

A wireless setup with optimal performance would be ideal in many situations. In essence,
an LSL interface without the complexities of wired networking and protocols.

Dr. G:

Wireless mechanisms, using a standard such as Bluetooth low energy (BLE) to allow
broad use of consumer electronics gadgetry. BLE is not ideally set up for sub-millisecond
wireless time synchronization, unless separate local clocks are built into the devices, which
requires additional power burden.

Dr. H:

Currently we’re building the infrastructure to record from IMUs on multiple rifles and
stream data from multiple HoloLenses. The “gold standard” that we’re aiming for is to be able to
record from larger scale units. Currently this is difficult to manage due to bandwidth issues.

3) Which artifacts are still hardest to suppress in real-time without post-hoc processing?
Dr. A:

Motion coupled hemodynamic fluctuations in fNIRS (especially scalp blood flow
impact).

EMG contamination of high gamma EEG during speech or chewing.
Respiration linked baseline drift in wearable ECG when subjects are talking or moving.

Real-time regression filters help but truly separating physiological covariates without
post-hoc ICA/Generalized linear model (GLM) remains tough.

Dr. B:

Even with post-hoc processing particularly, distinguishing the dependent variables we are
interested in from the noise floor can still be problematic. With push for ecological validity and
more realistic experiment settings ever on the rise in our field of neuroergonomics, the noise
floor has been on a trend of increase alongside. Environmental noise is still therefore, the biggest
challenge. This ranges from easier fixes, such as continuing to use gel ExG electrodes instead of
dry to reduce movement artefacts or putting isolation against sunlight in eye tracking or fNIRS
studies to random radio frequency jammer of some bureaucrat driving nearby and disrupting
experiments.

Dr. C:

It depends a lot on the modality. EEG is not affected by the same artifacts as EMG for
example. It also depends a lot on what you do with the data. If the data gets piped to a machine
learning maybe you don’t need to clean anything.
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Dr. D:

Mechanical artifacts due to cable sway or the electrode skin interface (impedance
changes).

Dr. E:
Movement artifacts where the transducer loses touch with the skin.
Dr. F:

Movement artifacts in neuroimaging are not so difficult to detect in real-time, but
correcting them on the fly is certainly a higher-level challenge.

Dr. G:
Episodic artifacts from motions.
Dr. H:

Extracting head movement artifacts (both noise from wire movement as well as muscle
activity) is difficult to parse in real-time.

4) Do you trust real-time quality metrics? Why?
Dr. A:

I treat them as early indicators, not final results. Signal quality indices based on
impedance, SNR, or kurtosis are reliable for gross failures (open lead, saturated diode) but poor
at detecting subtle non stationarities. We still log full session data and run offline diagnostics
before drawing conclusions.

Dr. B:

Depends on the dependent variable again, in that, if what is perceivably real-time can be
tractably analyzed and output during data flow — great. For instance, in EEG, environmental
factors can be strong enough to outline entire wavebands, in which case having a quality metric
that would distinguish environmental noise, within device noises (I have some first-hand
experiences with bad circuit designs causing imperfect data recordings), and participant related
noise — then that would be a real-time quality metric worth a look. And this is easier to attain
with due process than realized. But an EEG device reporting on impedance? Not as much as I
trust my trained eye.

Dr. C:

With the setup I use, yes, I do.
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Dr. D:

We have not been working with real-time quality metrics yet and [ would be doubtful that
they would be reliable and robust for different movement scenarios.

Dr.E:

Real-time QC is useful if it leads to real-time actions of the experimenter in case the
quality is not as good as it should be. For example, the experimenter re-attaching an electrode.
Real-time loses its value if it is open-loop and if there is no feedback to the measurement.

Real-time QC can also be useful if more information is available during the measurement
than what is encoded and stored on disk. This may happen for example with eye trackers, where
the real-time QC can use the camera image, whereas the signal stored on disk has been
condensed into the x and y gaze position and blinks.

If the real-time signal on which the QC is computed is the same as the signal that is
available offline, then offline always has the advantage that there are no computational limits (as
in real-time) and that there is flexibility in the choice of the algorithm or parameters.

Dr. F:

Several metrics for real-time assessment of data quality are available, and in most cases
are reliable. Obviously, a post-hoc analysis of data quality is also necessary to put in the context
of the experiment, and generate a proper strategy for data pruning or filtering.

Dr. G:

If real-time means updates on tens of seconds timescales to allow for averaging and
rejection of outliers, then yes. If real-time means second to second, or sub-second,
measurements, then no.

Dr. H:

It depends. On homemade data collection platforms it can be easier to classify bad
samples on the fly. However, depending on the depths of the black box in the vendor’s
application programming interface (API) there could be interpolation methods that mask bad
samples and are not able to be flagged/rejected until post-hoc processing.

5) What is the biggest difference between an algorithm that performs well offline and one that
survives on-device deployment?

Dr. A:

Offline processing affords different types of filters (such as infinite impulse response
(ITR), Butterworth with zero-phase correction, that is done in both forward and backward passes
for zero phase correction and requires all data at hand) and cannot be done online in real-time.
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Dr. B:

Under the assumption that on-device deployment of an algorithm has been done on a
circuit level, then circuit designs’ robustness vs. inflexibility and tangibility is a double-edged
sword; yes, robustness can be far greater in controlled and well tested circuitry but the device
circuit needing anything beyond a firmware update? That would render it unusable, therefore
unfeasible. Assuming a software deployment of on-device processing comes with a plethora of
tractability, hardware design, cost, and maintenance problems of its own.

Dr. C:

If the target is one device usage with streaming data you need to make sure that any
algorithm you use is stream compatible and implemented as such. Then putting this on device
should not lead to any blocker beyond money and skills.

Dr. D:
Higher flexibility for most offline algorithms
Dr. E:

Offline algorithms can provide the researcher with more complete but also more complex
representations of the signal features of interest. An on-device algorithm usually serves to
“compress “the high-dimensional signal into something that is as lo-dimensional as possible, as
that is the easiest to interpret and work with.

Dr. F:

It strongly depends on what the goal of the algorithm is. For instance, an on-board quality
checker with immediate feedback to the user is impactful, and it therefore it must be both reliable
and computationally efficient. However, if the algorithm’s objective is data processing/analysis
leading to interpretable results, an on-device implementation is not only difficult to implement
but also may compromise other useful device features like battery duration, computational
demand, weight, and other ergonomical and practical aspects.

Dr. G:

Algorithms that can handle motion artifacts are needed for on-device deployment, often
difficult given the power and compute constraints.

Dr. H:

Ability to handle out of distribution or rare events.
6) How do you validate a closed-loop ML model that adapts on the fly?
Dr. A:

Shadow mode logging: Run the adaptive controller in parallel while the actual stimulus is
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driven by a trusted baseline; compare decisions post-hoc.

Replay benchmarking: Feed the exact recorded streams back through multiple frozen
checkpoints of the model to audit divergence.

Interleaved lock in trials: Insert periodic calibration epochs where ground truth labels are
known (e.g., visual oddball) so you can quantify drift without interrupting the study.

Dr. B:

I answer under the assumption that this is not a fully black-box approach more so
followed by deep learning aficionados, and instead a well-designed complex feedback
mechanism of a multi-layered ML model. We can go two methods here; a theoretical approach
where the mathematics behind the ML is proven, the implementation is sound and valid, and the
overall realization can be tested within tractable circumstances, and a testing data set to also
provide an empirical perspective to testing for controlled as well as uncontrolled input/output
(I/0).

Dr. C:
Via behavioral performance, e.g., how fast the person can do the task.
Dr. D:

Not yet worked with such an approach but [ would try to come up with a standardized
test-battery that includes different standardized movements.

Dr. E:

It is not clear to me here what the closed-loop aspect of the ML model is. There are many
loops that can be closed with physiological signals, but whether closing them is meaningful
depends a lot on the real-world application or experimental setup.

I would distinguish between validity and reliability. I would assess reliability by
repeatedly evaluating the ML model on different versions of the signal with varying signal
quality. That does not have to be done online. I would test validity using some sort of
experimental design where the outcome of the ML model would be specifically studied under
known experimental perturbations (e.g., conditions that the ML model is meant to detect).

Dr. F:

I don’t do much ML in my work, so I can offer just a general and perhaps obvious
perspective. Validation should involve observations that are distinctively dissimilar from the
training set, so to understand the generalizability of the model and, as a subsequent step, to
develop a refinement/adaptation of such model for better performance.
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Dr. G:

Probably start with validation in a controlled setting such as a hospital, then progressing
to home use — ultimately to the field.

Dr. H:
No response

7) How do you handle missing packets or corrupt segments in a long recording when the study
cannot stop?

Dr. A:
Reject/eliminate that part of the task condition(s) from analysis.
Dr. B:

Depends on the dependent variable, the duration of data corruption and/or the amount of
missing packets. If it is too valuable data, gone for too long, then I would go as far to drop
portions of experiment blocks altogether if I absolutely cannot stop and/or restart the study.
However, that is bad design to begin with and I hope to never do one. If it is so much so that we
end up with too little a dataset, then there have been novel methods within the past few years for
generative-adversarial-networks (GANs) to more traditional ML approaches, and even signal
processing theory to visit to recreate, repair, or interpolate the data if the data type fits this frame
of possibilities.

Dr. C:
If the data is lost, it’s lost.
Dr. D:

These are usually removed offline from analyses in most our approaches as we have no
ground truth data for different movements that would allow for some kind of interpolation.

Dr. E:

I would try to identify that they are missing (for example by looking at jumps in a clock
or counter channel) and not interpret the data that spans over such an interruption, i.e., the
algorithm would skip that section of data. I would not try to interpolate the data.

Dr. F:

In task-based experiments, we typically remove/trim entire data segments that may lead
to false positive results, i.e., an entire block, or trial.
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Dr. G:
Usually these time segments are simply not analyzed.
Dr. H:

Currently we don’t have an agreed upon method on how to handle missing packets in
such a scenario. Typically, this is just flagged and handled in post-processing.

8) What is the best method you’ve seen for ground-truthing multi-modal physiological
streams in the wild?

Dr. A:

A hybrid of synchronized head mounted video + inertial measurement + stamped
experimenter annotations. The video provides context; IMU gives frame accurate movement
onset; annotations mark task events. When all three agree, you have a defensible ground truth.

Dr. B:

Divide and conquer has been one. Where all dependencies of a very complex interaction
setting can be broken down to their fundamental components (as far as our perception of the
interaction setting allows of course) and tested individually. Done with diligence and controlling
for unknown interaction effects as best as possible (i.e., not using components that are too
intertwined) then this works well. For instance, using an experiment battery to investigate how
outcomes would be affected by the interaction environment and more to see whether the
experiment apparatus can still perform functionally enough.

Dr. C:

You could run quality checks online, but this has a computational cost. It also depends a
lot on what stream you consider.

Dr. D:

I have not seen any ground-truthing approach for multi-modal but only single tests for
single modalities

Dr. E:

Comparing it to golden-standard physiological streams in well-controlled lab
environments.

Dr. F:

LSL offers good implementation for multi-modal streams but, testing wise, custom
methods are often employed by individual researchers/labs.
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Dr. G:

Measurements with multiple modalities or devices, e.g., HR from ECG, SCG, and PPG,
to establish redundancy and internal consistency.

Dr. H:

Collecting point of view (POV) video data has been helpful for verify data collection in
eye tracking and head tracking.

9) What is the most overlooked privacy, security risk when streaming raw physiological data
wirelessly?

Dr. A:

Physiological “side channel” identity leakage. Even if names are stripped, raw
ECG/EEG/NIRS spectra contain quasi unique biometric signatures. Streaming them over lightly
encrypted BLE (common in consumer wearables) enables re-identification attacks.

Dr. B:

The use of Bluetooth low energy (LE) is often done without much care due to how little
range it already, perceivably allows — I mean, it is a standard for fully unencrypted data transfer
without as much as a client-server handshake over the air that capturing it is a thumb sized USB
device away. Making sense of an unknown data structure is still madness though, and with
quality critical data — it is easy to understand why there is not much care given to it. But other
than that, 802.11 can be tractably bullet proof for the use we have for it while regular Bluetooth
is strong enough.

Dr. C:

It’s pretty obvious that you record the packets on the Wifi network and if the data is not
encrypted you can collect the data without authorization.

Dr. D:

Not sure, potentially other devices recording the data that might further allow personal
information to be matched with the physiological data (e.g., photos).

Dr. E:

That being near the person being recorded (i.e., in wireless range) might disclose
information about the stream to a bad actor. That the stream is transmitted through an external
device (e.g., first Bluetooth to phone, then from phone via Wifi to the cloud) and that the in-
between device can be the weak link. That data gets stored on an external device (like a phone,
computer, or cloud). The number of bad actors able to connect to the cloud (or to the in-between
device) is infinitely larger than the number of bad actors that can be in physical proximity.
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Dr. F:

Associating eavesdropped data to participants is certainly a concern, although decoding
and interpreting the data stream in a way that violates privacy remains a challenge for bad actors.

Dr. G:
Don’t know how to answer this one.
Dr. H:

It’s not necessarily overlooked but obviously streaming live data wirelessly is vulnerable.
As with any data collection, it is important to remember that even if data does not contain PII, it
can be reidentified if enough data is collected and the sampling method for participants is
restricted.

10) Looking five years ahead, which current research question will feel “resolved” and which
challenge will still be with us?

Dr. A:
“Probably solved”

Low jitter multi sensor time sync for wearables; next gen BLE/ULPW UWB chipsets
already demo sub microsecond network timing.

“Still haunting us”

Real-time motion artifact rejection for fNIRS/EEG in fully free-living conditions. Human
movement diversity outpaces current online models, and power efficient optical flow or EMG
aware correction remains an open challenge.

Dr. B:
No response
Dr. C:

Provided enough physiological data are collected in a consistent setting (same hardware,
same setup) we’ll be able to have models that generalize to any person without personalized
models.

The challenge will be to address hardware variabilities and heterogeneous datasets.
Dr. D:

Resolved, hardware development for improved and synchronized multi-modal
recordings.
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Open issues: Data fusion approaches allowing for “real” multi-modal analyses. "real" in
the sense that the data is fused, and different modalities inform the analyses of other modalities.
We often record multi-modal but then analyze EEG alone, ECG alone etc.

Dr.E:

Miniaturization of electronics will allow more embedded sensing devices to be built into
other things, hence allowing for more multisensory data capture.

Researchers will still not have a better training in or understanding of the signals that they
are working with. Capturing the experimental conditions in which data was recorded (i.e.,
annotations and metadata) will still be limited.

Dr. F:

Noise and movement artifacts will not disappear, but I believe that great progress could
be made in correcting or trimming unusable data very reliably, especially using multi-modal data
that support one another, i.e., wearable IMU data and neuroimaging data.

Dr. G:

Conventional vital signs may be resolved. Motion artifact cancellation and accurate
biochemical measurements will continue to be difficult.

Dr. H:

Team data collection should be solved within the next 5 years (e.g., multisensory data
streams simultaneously collected from multiple members of the squad).
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