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Summary 

Monitoring and evaluating operators’ cognitive states in real-time using 

neurophysiological and physiological signals recorded from wearable multi-sensor systems holds 

promise for enhancing flight safety and promoting mission success. However, several key 

challenges must be addressed to realize this vision. These include synchronizing signals across 

different modalities, implementing robust real-time data cleaning pipelines, developing effective 

methods for multi-sensor data fusion, and overcoming computational constraints associated with 

real-time processing and model inference. This report synthesizes expert insights gathered 

through targeted questions, highlighting potential solutions to these challenges and outlining 

strategies for enhancing real-time cognitive state monitoring and performance prediction in 

operational cockpit settings. 
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Introduction 

The U.S. Army’s Future Vertical Lift (FVL) program aims to design airframes with 

unparalleled performance capabilities. The FVL program’s innovations, from faster speeds at 

lower altitudes to prolonged flights and cutting-edge reconnaissance equipment, promise 

enhanced coordination with group forces. However, those advancements come with their own set 

of challenges, such as increasing operators’ workload. The increased workload on operators 

could lead to potential mishaps, with costs that could soar upwards of $100 million annually, as 

past aircraft data suggests (NATO RTO-TR-HFM-162, 2012). 

Monitoring in real-time an operator’s cognitive state and performance allows for the 

timely detection of conditions in which aviators may be impaired, distracted, or experiencing 

elevated stress, thereby enabling intervention by mission planners, supervisors, or automated 

systems to prevent accidents and operational failures. Traditional methods, such as self-

assessment of cognitive workload, are often unreliable due to biases and are ineffective during 

periods of high cognitive workload when available cognitive resources are low. These challenges 

underscore the need for more objective assessment tools. Physiological and neurophysiological 

measures, including electrocardiogram (ECG), electroencephalogram (EEG), and functional 

near-infrared spectroscopy (fNIRS), provide a promising avenue, as highlighted by various 

studies (Caldwell, 2005; Matthews & Desmond, 2002; Saxby et al., 2013; Gao et al., 2025; Li et 

al., 2022; Niu et al., 2025). By leveraging these measures, we can objectively assess an 

operator’s cognitive state, a process broadly known as operator state monitoring (OSM) (which 

may also encompass physiological health, hypoxia, or fatigue monitoring). The long-term goal is 

to deploy wearable sensor systems that support real-time cognitive monitoring, inform adaptive 

automation, and predict operator performance to help avert potential mishaps in complex flight 

environments. 

Monitoring human cognitive processes with multiple neurophysiological and 

physiological sensors offers a more comprehensive view of brain and body dynamics than any 

single modality alone (Li et al., 2022). Modalities such as EEG, fNIRS, ECG, eye tracking, and 

other measures each capture distinct but complementary aspects of cognitive states. For example, 

heart rate variability (HRV), which measures the time variation between consecutive heartbeats, 

is a widely used indicator of autonomic nervous system (ANS) function (Forte et al., 2019). The 

high temporal resolution of EEG provides valuable insights into dynamic changes in workload 

and fatigue (Diaz-Piedra et al., 2020). When combined, they can provide richer and more 

integrated characterization of mental states, such as attention, workload, and fatigue, than when 

used in isolation. 

However, integrating these data streams and performing real-time OSM in practice 

presents substantial challenges. Key among them is the need to precisely synchronize signals 

operating on different time scales, the difficulty of performing real-time data cleaning and 

analysis (including quality control and adaptive machine learning [ML]) during data recordings, 

the development of effective data fusion techniques to combine features extracted from each 

modality, and computational demands of processing large volumes of high-dimensional data in 

real-time rather than offline. In this report, we examine each of these challenges and outline 

current solutions and best practices, drawing mainly on expert insights. 
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This report is not intended to serve as an exhaustive literature review for each of the 

identified challenges, as any one of them could warrant a dedicated review on its own (e.g., 

Duffy & Feltman, 2023; Vogl et al., 2023). Given the number of the topics addressed, a full 

literature review for each would exceed the scope of this report and potentially obscure its 

practical focus. Instead, we place greater emphasis on expert perspectives gathered in response to 

targeted questions designed to address the key issues, while selectively referencing relevant 

literature where it directly informs key issues. This approach aims to guide the development of 

practical tools and models suitable for real-world OSM applications. 

To inform this report, specialized subject matter experts in the research community were 

asked to participate in a virtual expert panel. Specifically, highly respected experts were 

contacted through email and asked to provide information on best methodological practices. We 

include a list of the experts we contacted to generate this report (Table 1), along with the specific 

questions asked (Table 2). To protect privacy, individual names in Table 1 have been replaced 

with alphabetical letters. All experts consented to publication of their affiliation and expertise as 

written. Full, unedited responses are included in Appendix B, organized by questions. 

It is worth noting that many of the strategies discussed throughout this report to address 

those key issues may not appear as the main focus of journal articles. Instead, they often exist in 

the background of successful implementation, shared informally among research teams or 

mentioned briefly in method sections of articles. However, these strategies are critical for 

ensuring that OSM applications can be safely and effectively deployed in real-world flight 

environments. 
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Table 1. Experts Contacted for the Report 

Name Affliation Expertise 

Dr. A 

Department of 

Psychological and Brain 

Science 

Drexel University 

USA 

Multi-sensor recording, 

neuroimaging, EEG, fNIRS 

Dr. B 

Donders Instititue for 

Brain and Behavior, 

Cognition, and 

Behaviour 

Radboud University  

The Netherlands 

EEG, skin conductance, eye 

movements, and multi-modal 

recording 

Dr. C 

Meta Reality Labs 

(Paris) 

France 

EEG, MEG, co-creator of 

MNE-python, spearheads 

GPU-accelerated real-time 

source imaging and BCI 

pipelines 

Dr. D 

Berlin Mobile 

Brain/Body Imaging 

Lab, Technische 

University  

Germany 

Pioneer of MoBI + virtual 

reality (VR) + motion-capture 

fusion, high-density EEG 

synchronized to kinematics 

Dr. E 

Center for Cognitive 

Neuroimaing, Radboud 

University  

Netherlands 

Founder of FieldTrip toolbox, 

real-time EEG/MEG 

streaming and analysis 

Dr. F 

Department of 

Engineering Technology 

University of Houston 

USA 

Biomedical optics, optical 

bioimaging, wearable health 

technologies, EEG, fNIRS 

Dr. G 

Simpson Institute for 

Bioelectronics 

Northwestern University 

USA 

Bio-integrated electronics, 

soft materials, and flexible 

biomedical devices, 

microfluidics 

Dr. H 

U.S. Army Research 

Laboratory 

USA 

Visual neuroscience and eye 

tracking, EEG and 

neuroimaging, 

neuroergonomics and human-

artificial intelligence (AI) 

teaming 

Note. MEG = magnetoencephalography, MNE = MEG+EEG analysis and visualization, GPU = 

graphic processing unit, BCI = brain-computer interface, MoBI = mobile brain/body imaging.  
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Table 2. Questions for the Experts 

Number Questions 

1 
What level of inter-stream temporal error is still acceptable for your 

analyses? 

2 
If you have unlimited resources, what would be your “gold-standard” 

synchronization setup look like? Why isn’t it practical today? 

3 
Which artifacts are still hardest to suppress in real-time without post-

hoc processing? 

4 Do you trust real-time quality metrics? Why? 

5 
What is the biggest difference between an algorithm that performs 

well offline and one that survives on-device deployment? 

6 How do you validate a closed-loop ML model that adapts on the fly? 

7 
How do you handle missing packets or corrupt segments in a long 

recording when the study cannot stop? 

8 
What is the best method you’ve seen for ground-truthing multi-modal 

physiological streams in the wild? 

9 
What is the most overlooked privacy, security risk when streaming 

raw physiological data wirelessly? 

10 
Looking five years ahead, which current research question will feel 

“resolved” and which challenge will still be with us? 

 

Synchronization Across Modalities 

When combining signals like EEG (sampling at 200–1000 hertz [Hz]) with slower signals 

like fNIRS or peripheral physiology (often 10–100 Hz), precise time synchronization is essential 

(Sun et al., 2021; Uchitel et al., 2021). All sensors must be referenced to a common timeline so 

that cognitive events (e.g., a stimulus onset or a blink artifact) align correctly across data 

streams. Even slight misalignments can lead to spurious results. For example, an EEG peak 

might be paired with the wrong heartbeat or stimulus if clocks drift. As Xiao et al. (2022) 

emphasized, accurate timestamp matching is the foundation for multi-modal analyses and for 

validating new sensors against gold-standard devices. Without synchronization, accurate 

interpretation of relationships between modalities is compromised. Thus, robust synchronization 

is a prerequisite for any multi-sensor cognitive study and OSM. 

Temporal Resolution and Acceptable Error 

Different applications (such as neurofeedback, fatigue detection, BCI, or OSM) tolerate 

different amounts of timing error between streams. Many experts maintain that high temporal 

resolution brain signals like EEG or MEG should be synced within only a few milliseconds. For 

instance, Dr. E suggested that around 5 milliseconds (ms) jitter is the maximum acceptable 

timing error for correlating EEG/MEG with other streams. Similarly, Dr. C and others advocate 
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keeping inter-stream differences below ~10 ms. In experiments examining fast event-related 

potentials or stimuli that depend on precise timing (e.g., gaze-contingent events), even 10–20 ms 

offsets could blur or drown out the neural effects of interest. On the other hand, slower 

physiological trends can forgive a bit more lag. For example, fNIRS signals change over 

seconds, so misalignment on the order of hundreds of milliseconds might be acceptable for some 

analyses, according to Dr. F. Likewise, aggregated cognitive state metrics (which often average 

signals over hundreds of ms) might tolerate on the order of ±20 ms timing uncertainty (Dr. A). 

The general consensus is to aim for sub-10 ms synchronization error for neuropsychological 

signals and try to keep even slower modalities within a few tens of milliseconds alignment. In 

specialized cases like aligning EEG with discrete event triggers, sub-millisecond precision is 

ideal. These tolerances inform the required rigor of synchronization solutions. 

Hardware Synchronization Methods 

Hardware-based synchronization remains one of the most reliable approaches for aligning 

multi-modal physiological recordings, though implementation varies in precision, cost, and 

scalability. A commonly used method involves sending timing pulses or event markers to all 

devices through physical trigger lines. For example, a transistor-transistor logic (TTL) pulse can 

be delivered simultaneously to EEG, fNIRS, and other systems to mark shared events (e.g., Shin 

et al., 2018). This type of synchronization aligns data streams relative to discrete events, such as 

stimulus onset or task transitions, but does not provide continuous alignment at the level of 

individual time points. In controlled laboratory environments with physically connected 

equipment, this approach is low-cost, relatively simple, and sufficiently accurate for many 

experimental designs having well-defined and temporally distinguishable events. 

A more precise synchronization approach involves the use of a shared clock or 

centralized acquisition system to timestamp data across modalities. In such systems, each 

physiological signal must be amplified individually, as EEG, ECG, fNIRS, and other modalities 

require signal-specific amplification and filtering. The amplified signals are then digitized and 

timestamped with a unified acquisition platform that applies a common timing reference. For 

example, recent EEG and fNIRS systems have taken advantage of these configurations to 

achieve precisely synchronized recordings (e.g., Gao et al., 2025). 

While this centralized setup enables precise synchronization at the sample level, it 

introduces significant practical limitations. Each sensor requires its own amplification circuit, 

and scaling to multiple sensors increases system complexity, cost, and power consumption. For 

instance, integrating ten physiological sensors would require ten separate amplification circuits, 

which makes the approach cumbersome and difficult to implement in wearable or mobile 

environments. 

To overcome these limitations, modern synchronization solutions employ distributed 

timing protocols over network infrastructure. One such approach involves the use of the 

precision time protocol (PTP), where a grandmaster clock is transmitted via Ethernet or optical 

fiber to each recording device. This can be combined with a synchronized global positioning 

system (GPS) pulse-per-second signal, allowing each device to timestamp data relative to a 

shared global reference. This approach enables continuous and highly precise synchronization 

across devices, often achieving sub-millisecond or even microsecond alignment (e.g., Lee et al., 
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2019). According to Dr. A, such systems represent a gold standard for synchronization by 

effectively eliminating clock drift. In addition, network-based synchronization offers greater 

scalability and flexibility, making it particularly well-suited for distributed, mobile, or wearable 

sensor networks where central wiring is not feasible.  

Although the event-based synchronization through trigger pulses offers a simple and 

cost-effective method for aligning discrete events, it does not ensure precise time alignment 

across data streams. This limitation can be particularly problematic for OSM applications. In 

real-world operational environments, operators often engage in complex, continuous tasks that 

lack clearly defined start and stop points. Moreover, they may perform multiple tasks 

simultaneously, making the event-based synchronization insufficient for capturing the full 

temporal dynamics of cognitive and physiological processes. Centralized acquisition systems 

provide higher temporal precision but are limited by hardware complexity and poor scalability. 

In contrast, a network-based synchronization approach supports precise and continuous 

alignment across multiple sensors while maintaining flexibility, making them ideal for real-world 

multi-modal data collection.  

Software and Network-Based Synchronization 

An increasingly popular solution is to synchronize clocks in software over a network. The 

Lab Streaming Layer (LSL) (Kothe et al., 2024) is one prominent open-source framework 

designed for this purpose. LSL establishes a common time base across devices by continuously 

aligning their local clocks, typically by exchanging timestamps and compensating for drift every 

few seconds. All data samples from each device are tagged with LSL timestamps that reflect a 

globally synchronized clock, with known offset and drift for each stream. This allows disparate 

data streams (EEG, ECG, fNIRS, motion sensors, etc.) to be recorded together in a unified 

timeline, often saved in a standard format like extensible data format (XDF).  

Blum et al. (2021) demonstrated that LSL-based synchronization can achieve temporal 

alignment virtually equivalent to traditional wired methods, even in fully mobile setups. In their 

tests, multiple Android phones running LSL maintained synchronization within a few 

milliseconds while streaming data from multiple sensors. A key advantage of software-based 

synchronization is its flexibility. Devices do not require physical trigger lines or shared 

hardware. As such, any device capable of connecting to a local network, either wirelessly or 

through a wired connection, can join the synchronized data pool.  

However, software-based synchronization is not without limitations. Network latency and 

clock drift still exist and must be corrected frequently to maintain timing accuracy. LSL 

addresses this by defaulting to clock realignment every 5 seconds, and by logging clock offset 

correction, which can be used during post-processing to adjust for any residual timing 

discrepancies. Other network-based synchronization approaches include Network Time Protocol 

(NTP) or PTP on supported devices, but these typically need custom implementation on each 

device. 

Data security is a consideration when using software-based synchronization over wireless 

connections. Researchers must be mindful of potential vulnerabilities when streaming 

physiological data. Wi-Fi signals can travel long distances, and if data streams are not encrypted, 
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sensitive information about participants’ cognitive states or biometric signature may be exposed, 

as several experts have pointed out. In adversarial contexts, such information could be exploited 

to jeopardize the success of the mission. Therefore, in real-world operational environments, 

Bluetooth connections, which have shorter transmission ranges and lower risk of remote 

interception, may offer a more secure option for physiological data streaming.  

In practice, many laboratories employ a hybrid approach to synchronization. A common 

approach involves sending a one-time manual synchronization trigger, such as a flash of light 

visible to all sensors or a keypress event, to align the initial start times across devices. Following 

this, a software framework, such as LSL or FieldTrip developed and maintained by Dr. E, is used 

to continuously adjust for clock drift during recording. Drift correction is critical because even 

devices that begin synchronized will slowly diverge over time due to clock frequency 

differences.  

Software agents that periodically measure clock offsets, as LSL does, or periodic re-

triggering can correct for this drift. The acceptable interval for re-synchronization depends on 

how fast drift accumulates. Some high-end systems drift only a few microseconds per minute, 

whereas consumer devices might drift several milliseconds per minute. Experts recommend 

limiting drift to within a few milliseconds per minute for neural data streams. For example, Dr. A 

suggested maintaining drift at or below 5 ms per minute for EEG/fNIRS. These considerations 

underscore that synchronization is not a one-time operation but an ongoing process that must be 

maintained throughout the entire data collection period. 

Emerging and Future Solutions 

With unlimited resources, researchers envision synchronization setups that are both fully 

wireless and highly precise. Several experts foresee a future where all wearable sensors share a 

common wireless clock or timestamp broadcast. For instance, Dr. D suggested that an ideal, 

though currently impractical, solution would involve physically connecting all sensors to one 

central clock or computer. While such a configuration would ensure perfect synchronization, it 

would also severely restrict natural movement and mobility during data collection.  

Other experts, such as Dr. G and Dr. A, highlight the potential of next-generation 

wireless technologies (such as advanced Bluetooth protocols or ultra-wideband [UWB]) to 

achieve sub-millisecond synchronization without the need for physical connections. Indeed, low-

jitter, multi-sensor time synchronization is widely viewed as a challenge on the verge of being 

resolved, with prototypes already demonstrating sub-microsecond (<1 µs) accuracy for wearable 

devices (Dr. A, looking ahead five years). Advances in miniaturization and the integration of 

dedicated clock synchronization chips into wearables are expected to further enhance timing 

accuracy. 

In the meantime, practical solutions continue to rely on frameworks such as LSL and 

creative hybrid approaches that combine hardware triggers, shared video or inertial measurement 

unit (IMU) references, and software-based clock alignment. These methods remain essential 

tools for ensuring all data streams are temporally aligned. 
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To complement expert perspectives, we also reviewed the current literature to summarize 

methods commonly used in multi-sensor studies, as presented in Table 3.  

Table 3. Summary of Synchronization Methods in Current Multi-Sensor Studies 

Authors/Year Sensors Synchronization 

Method 

Al-Shargie et al. (2016) EEG and fNIRS Hardware trigger method 

Cao et al. (2021) EEG, EOG, IMU, and pulse 

oximetor 

Hardware using analog-

to-digital converter 

(ADC)  

Deligani et al. (2021) EEG and fNIRS Software timestamp 

Gao et al. (2025) EEG and fNIRS Hardware trigger method 

Lin et al. (2020) EEG and fNIRS Post-hoc alignment 

Shin et al. (2018) EEG and NIRS Hardware trigger over a 

parallel port 

Smith et al. (2023) EEG, ECG, EDA, and RSP, 

eyetracking, and fNIRS 

Hardware and software  

Su et al. (2023) EEG and fNIRS Post-hoc alignment 

 

Online (Real-Time) Data Analysis 

Collecting multi-modal data is only the first step; interpreting and acting on it in real-time 

presents a far greater challenge. This section examines the difficulties in cleaning and validating 

physiological signals as they are being acquired, as well as the deployment of machine-learning 

models during ongoing experiments. We also discuss strategies researchers use to ensure data 

quality and analytic reliability in online settings, meaning during live data collection, as opposed 

to offline settings, where analysis is performed after data collection is completed. Ensuring real-

time signal integrity and model performance is essential for close-loop cognitive experiments 

and neurofeedback applications. 

Artifacts and Noise in Real-Time 

Neurophysiological signals are inherently noisy and prone to contamination by various 

artifacts (e.g., Nunez & Srinivasan, 2006). Removing artifacts becomes significantly more 

difficult without the benefit of offline processing. Motion artifacts are a prime example. When a 

participant moves suddenly, EEG electrodes may shift or an fNIRS optode may momentarily 

lose contact, causing large signal disturbances. According to our expert panel, such movement-

related artifacts remain the hardest to suppress in real-time. Dr. E noted that if a sensor loses 

touch with the skin even briefly, the resulting data loss or spike is very challenging to correct in 

real-time. Dr. D similarly highlighted mechanical artifacts (like cable sway or electrode 
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impedance fluctuations due to movement) as persistent issues that current real-time systems 

struggle to manage. Even environmental noise can pose a serious issue in mobile or field setups. 

As Dr. B observed, efforts to increase ecological validity by conducting experiments out of the 

laboratory often introduce interference in wearable EEG recordings. Such noise may raise the 

“floor” of the signals, making it difficult for real-time algorithms to detect subtle cognitive 

effects.  

Online systems typically rely on basic filtering and artifact mitigation. These include 

high-pass filtering to remove slow drift, notch filtering to remove electrical noise, or 

incorporating accelerometer data to partially correct for movement-induced artifacts. While these 

methods are effective for handling predictable and stationary artifacts (e.g., removing a 60 Hz 

powerline noise, or regressing out linear motion trends), they cannot match the sophistication of 

offline methods. Techniques such as independent component analysis (ICA) or artifact subspace 

reconstruction (ASR, Mullen et al., 2013) require access to the full dataset and cannot be 

executed in real-time. As Dr. A pointed out, certain artifacts can only be cleanly separated with 

post-hoc methods (e.g., ICA or general linear modeling) that are not feasible to run in real-time. 

For example, when EEG signals are contaminated by muscle activity during speech or chewing, 

real-time systems might apply a band-pass filter to attenuate the high-frequency EEG noise, but 

they often cannot fully isolate the neural signal of interest until an offline ICA is performed to 

remove those muscular artifacts. Similarly, fNIRS signals affected by motion-coupled blood 

flow changes might be partly corrected for by an online motion filter, but true separation of 

cerebral versus scalp blood signals usually requires an elaborate offline analysis.  

In summary, current real-time artifact suppression methods are limited in their ability to 

handle complex or transient artifacts. Sudden or episodic movement continues to present a 

significant obstacle. Ongoing research in this area includes developing adaptive filtering 

algorithms and training machine learning models to detect and remove artifacts during data 

acquisition. However, robust and generalizable real-time solutions remain an area of active 

investigation. 

Real-Time Quality Control (QC) Metrics 

One way to manage data quality during an experiment is to monitor signal quality metrics 

in real-time. Many modern acquisition systems provide continuous feedback on indicators such 

as electrode impedance for EEG, signal-to-noise ratio, or statistical measures like kurtosis that 

reflect signal integrity. These metrics can alert the researcher to potential problems, such as a 

detached electrode or a sensor saturation. A critical question, however, is whether these real-time 

quality metrics can be trusted. Expert opinions on this issue were divided.  

Dr. E emphasized that real-time quality checks are only useful if they lead to an 

immediate corrective action. For example, if electrode impedance rises above an acceptable 

threshold, the experimenter can pause to reattach an electrode. In this sense, such metrics serve 

as feedback to enable timely intervention. He also described scenarios in which real-time 

monitoring may reveal problems that are not apparent in the recorded data. For instance, an eye 

tracker might provide a live video feed that reveals poor calibration or tracking performance 

before it becomes evident in the saved gaze coordinates. In such cases, real-time monitoring may 

detect issues that offline review of the reduced data might miss. 
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However, several experts cautioned against over-reliance on these metrics. Dr. D 

questioned the robustness of real-time metrics, particularly under variable movement conditions. 

Dr. B pointed out that although it is theoretically possible to develop advanced real-time metrics 

that differentiate among environmental noise, device-related noise, and physiological artifacts, in 

practice many commercial systems provide only simplistic outputs. For example, an EEG 

amplifier might report only impedance values, which she finds less reliable than her own visual 

inspection of the signals. Dr. F acknowledged that many signal quality metrics are available and 

generally sufficient for a quick assessment. Nevertheless, he emphasized that post-hoc analyses 

remain essential for interpreting data quality in context and for performing reliable artifact 

rejection. Similarly, Dr. A described real-time indices as early warning signals rather than 

definitive assessments. These metrics are helpful for detecting obvious failures, such as a 

disconnected lead or sensor saturation, but they are limited in their ability to detect subtle 

changes or non-stationarities in the data. For this reason, his laboratory always stores raw data 

and conducts comprehensive offline diagnostics before drawing conclusions. 

In general, real-time quality control (QC) is useful for flagging major issues and, in some 

cases, for triggering an adaptive system response, such as adjusting a stimulus or notifying the 

participant to stay still, but it cannot replace the depth of offline quality analysis. For truly 

critical applications, some experts, including Dr. G, recommended that one should average or 

integrate quality measures over longer windows (tens of seconds) to get stable estimates. 

Attempting to update quality assessments every second or less often results in noisy and 

unreliable metrics. While real-time QC monitoring allows for on-the-spot adjustments and helps 

researchers stay informed about the ongoing quality of the data being collected, they remain 

cautious and rely on thorough offline review to ensure final data integrity. 

Validating Online Machine Learning Performance  

A growing number of cognitive experiments now employ closed-loop paradigms, in 

which data streams are recorded in controlled environments and analyzed in real-time to adapt 

the stimulus or provide feedback (e.g., Chen & Ziegler, 2025). A key challenge in these 

experiments is ensuring that the ML models driving these closed-loop systems maintain accurate 

performance throughout the session. While validating a model offline using cross-validation is 

well established, real-time deployment introduces new complexities. Once a model is operating 

online, particularly if it is adapting continuously by learning from incoming data during the 

experiment, questions arise regarding how to assess its ongoing performance and prevent issues 

such as model drift or the delivery of inaccurate feedback. 

The expert discussions have proposed several solutions to this challenge. Dr. A outlined a 

multi-faceted approach to verifying the reliability and performance of closed-loop models: 

• Shadow mode logging involves running the adaptive algorithm in parallel with a 

standard, trusted experiment control system without the model to influence the 

live experiment. The model generates predictions or decisions in real-time and 

logs them, but the participant experiences a predetermined, fixed sequence of 

events. After the session, the model’s logged decisions can be compared to 

ground truth labels or expected outcomes. This approach allows researchers to 

evaluate how the model would have performed in a real-time setting without 
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risking the validity of the live experiment. For example, in a closed-loop attention 

task, the adaptive model might determine the optimal moment to present a target 

based on EEG activity. In shadow mode, the targets are instead presented at fixed 

intervals, while the model’s predicted presentation times are recorded for post-hoc 

evaluation. 

• Replay benchmarking refers to feeding previously recorded data back through 

the model, or through different versions of the model, to audit its behavior. After 

a live session, the multi-modal data streams can be replayed through the model 

offline, enabling retrospective evaluation of performance. This can be particularly 

useful for adaptive models that update themselves over time. By replaying the 

same data through the model at different checkpoints, researchers can examine 

whether the model’s behavior changed and assess whether any drift or 

performance degradation occurred. For instance, by comparing early and late 

predictions on the same input data, one can determine whether the model adapted 

appropriately or overfit to transient features in the training data. 

• Interleaved lock-in trials provide another strategy to monitor model accuracy 

during an experiment. These trials involve periodically presenting stimuli with 

predictable responses, such as an oddball stimulus that is expected to elicit a 

characteristic neural signature. By interspersing these calibration events at regular 

intervals within the main task flow, researchers can assess whether the model 

continues to respond correctly to well-understood inputs. Because the expected 

outcomes of these trials are known, any significant deviations from the correct 

detections may indicate that the model’s performance is degrading. This can serve 

as a signal to trigger model recalibration, reinitialization, or manual review.  

Using these approaches, researchers can increase their confidence in the performance and 

reliability of online models. Additional recommendations include the importance of thoroughly 

testing the entire closed-loop system in controlled settings before deploying it in more variable or 

natural environments. Dr. G advised beginning validation in a tightly controlled environment, 

and then gradually transitioning to real-world use. This stepwise approach ensures that the 

model’s performance remains robust as experimental conditions become noisier or less 

predictable.  

Dr. C offered a complementary perspective, emphasizing the value of behavioral 

validation. If the objective of the closed-loop system is to enhance user performance, such as 

improving reaction times or task accuracy, then one direct measure of model effectiveness is 

whether those improvements are observed in practice. In this context, model validation is not 

limited to algorithmic metrics but also include measurable improvements in participant’s 

behavior. 

Ultimately, a model that performs well offline may still fail when deployed in a live 

context unless it can handle unpredictable live data streams and operate stably without reliance 

on offline fine-tuning. The strategies discussed above provide a practical toolkit for maintaining 

scientific validity and experimental reliability when integrating ML into closed-loop cognitive 

studies or OSM.  
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Data Fusion and Integration 

Once data from multiple sensors are synchronized and collected (ideally with minimal 

noise), the next challenge is how to combine these multi-modal data to produce meaningful 

insights. Data fusion can occur at various stages of the processing pipeline. Researchers might 

choose to merge raw signals, extract features independently from each modality and then 

combine them or conduct separate analyses and integrate the results at the decision level. 

Achieving effective fusion, in which the combined output provides more information than any 

individual modality, remains an active area of research (e.g., John et al., 2024). 

The figure illustrates a hybrid EEG–fNIRS system designed for cognitive state 

monitoring. In this configuration, EEG and fNIRS signals are recorded concurrently to capture 

complementary neural information. Each data stream undergoes modality-specific preprocessing 

and feature extraction before the features are fused into a unified dataset for classification or 

inference. EEG contributes features with high temporal resolution, capturing rapid neural 

oscillations or event-related potentials (e.g., Cao et al., 2021), while fNIRS contributes features 

with high spatial resolution, reflecting localized hemodynamic changes (e.g., Li et al., 2017). The 

goal of this integration is to leverage the strengths of each modality to achieve better accuracy or 

robustness in detecting cognitive states than would not be possible using either modality alone. 

Multi-modal fusion has the potential to overcome the inherent limitations of single-modality 

systems, leading to more precise and reliable interpretation of cognitive states. Successful multi-

modal fusion strategies have been shown to improve classification accuracy in mental workload 

and stress detection (e.g., Deligani et al., 2021). In such cases, the fused system not only captures 

a broader range of relevant information but also increases resilience to noise or artifacts present 

in any single input stream.  

 

 

Figure 1. Example of a hybrid EEG-fNIRS setup. 
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Fusion Strategies (Online and Offline)  

Several approaches have been developed to integrate multi-modal sensor data for 

cognitive state classification, each differing in where and how the information are combined 

(John et al., 2024). These can be broadly categorized into feature-level (early) fusion, decision-

level (late) fusion, and model-level (intermediate) fusion, each with distinct assumptions, 

advantages, and implementation challenges. 

Feature-level fusion refers to the direct concatenation or combination of extracted 

features from each modality into a single composite feature vector that serves as input to a 

downstream ML model (Niu et al., 2025; Borghini et al., 2020). For example, one might 

compute band-power features from EEG and HRV metrics from ECG, and then concatenate 

these into a unified vector to train a classifier that predicts cognitive workload or overload. This 

approach retains a rich representation of the multi-modal information and allows the model to 

learn potential cross-modal relationships. However, it requires that features from each modality 

be well-aligned in time, demanding precise synchronization between data streams. Moreover, the 

resulting high-dimensional input space may increase the risk of overfitting and impose 

computational burdens, particularly when large numbers of features are involved, or training data 

are limited (Sams et al., 2023). 

In contrast, decision-level fusion involves processing each modality independently using 

separate models or classifiers. The outputs of these models, often probabilities or class 

predictions, are then integrated at a higher-level using methods such as weighted voting, rule-

based logic, or ensemble learning techniques (Xefteris et al., 2023). This approach is particularly 

advantageous when different modalities have asynchronous sampling rates, variable reliability, 

or are prone to missing data. Because each modality’s processing pipeline operates 

independently, decision-level fusion is well-suited for real-time applications and modular system 

design. However, this strategy may miss complex cross-modal interactions that occur at earlier 

processing stages (John et al., 2024). 

Model-level fusion, also referred to as intermediate or hybrid fusion, occupies a 

conceptual space between early and late fusion. Here, each modality is processed through a 

dedicated subnetwork (e.g., a neural network branch) that learns modality-specific 

representations, which are subsequently merged within the model (typically at hidden or 

intermediate layers) (e.g., Chen et al., 2022). This enables the system to learn rich, joint 

representations that capture both intra- and inter-modal relationships. Classical statistical 

approaches such as canonical correlation analysis (CCA) and joint ICA exemplify this fusion 

strategy by identifying latent components that covary across modalities. More recently, deep 

learning architectures have emerged that incorporate model-level fusion via attention 

mechanisms, gating modules, or shared latent spaces (e.g., Zou et al., 2024). One prominent 

example is the Temporal Fusion Transformer (TFT), which accepts feature-level inputs but 

performs learned fusion internally, using a combination of attention and gating layers to 

selectively integrate information across modalities and time. Although inputs to the TFT may 

resemble those used in early fusion, its internal architecture qualifies it as a model-level fusion 

method, as it learns to emphasize cross-modal dependencies during training (Lim et al., 2021). 
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Collectively, these fusion strategies offer complementary advantages. Feature-level 

fusion is straightforward to implement and can exploit all available data simultaneously but 

requires synchronization and dimensionality control. Decision-level fusion offers robustness and 

modularity, especially when modalities vary in quality or temporal characteristics. Model-level 

fusion, while more complex to implement, offers a principled and flexible way to learn high-

level multi-modal abstractions, potentially improving model generalizability and interpretability. 

From a workflow perspective, offline data fusion performed after data collection enables 

more complex and flexible operations. Researchers can experiment with tuning parameters, 

retrospectively aligning data streams or addressing missing data (e.g., Gao et al., 2025; Deligani 

et al., 2021; Li et al., 2017) to get better results. Offline analysis also allows comparisons 

between fusion at the feature level and at the decision level, enabling the selection of the 

approach that yields better validation accuracy.  

In contrast, online fusion during live data acquisition must be computationally efficient 

and suitable for real-time processing. This often involves predefined computations that integrate 

data streams as they are received. For example, a real-time cognitive load index might be 

calculated as a weighted combination of normalized EEG beta power and pupil diameter, using 

weights determined in prior offline training. Some online systems can implement heuristic rules. 

For instance, an attention monitoring system may require both an EEG marker and an eye gaze 

measure to indicate a lapse before flagging users. This approach, a form of decision level fusion, 

can improve specificity by reducing false positives. 

A central challenge in multi-modal integration lies in the vast design space. Researchers 

must determine both how and when to fuse information, and these decisions often depend on 

domain knowledge, task requirements, and empirical testing (e.g., Li et al., 2022). 

Evaluating Fusion Approaches  

It is essential to evaluate whether a multi-modal combination is genuinely effective. 

Simply recording multiple data streams is not inherently valuable unless their integration yields 

new insights or leads to improved performance on a target task. Dr. D noted that many studies 

described as multi-modal still analyze each modality independently. Truly integrated analyses, 

where modalities inform and complement one another, remain relatively rare. The overarching 

goal is to achieve effective synergy. For example, physiological signals such as heart rate or skin 

conductance can be used to contextualize neural activity measured with EEG, or neural signals 

can be used to interpret physiological responses. 

One straightforward evaluation metric is performance improvement. A critical question is 

whether a model trained on combined data predicts cognitive outcomes, such as error rates or 

mental workload, more accurately than models based on single modalities. Many studies report 

such gains (Lin et al., 2017; Aghajani et al., 2017; Deligani et al., 2021; Chu et al., 2022). For 

instance, in mental workload classification, EEG data may offer moderate predictive value, and 

fNIRS may also perform moderately well, but their combination can result in significantly higher 

accuracy (Lin et al., 2017). 

 



15 

Beyond accuracy, multi-modal systems offer improved robustness. These systems are 

more resilient to noise or data loss in any one channel. If EEG becomes excessively noisy during 

a task, complementary signals from ocular or cardiac sensors may still provide sufficient 

information to infer cognitive state, allowing the fused output to remain reliable. As Dr. G 

observed, redundancy across sensors can also serve as a consistency check. For example, heart 

rate can be measured simultaneously using ECG, photoplethysmography (PPG), and 

seismocardiography (SCG), such that if one modality fails, the others can provide backup 

measurements. 

A specialized application of multi-modal integration involves using one modality to clean 

or validate another. Dr. F offered a forward-looking example, combining motion data from 

wearable IMUs with neuroimaging data to detect and correct motion related artifacts. In this 

scenario, the IMU can be used to identify periods of movement, enabling algorithms to remove 

or adjust brain signals that are likely contaminated. This form of cross modality support offers a 

pragmatic fusion strategy, where one sensor enhances the data quality of another. Although such 

corrections are currently performed manually, for instance by visually rejecting EEG segments 

that coincide with IMU detected movement, future systems may automate this process in real-

time. 

Effective multi-modal data integration presents both a valuable opportunity and a 

substantial challenge. It holds the promise of offering a more complete understanding of 

cognitive processes. However, this potential can only be realized through careful methodological 

design. Best practices emerging from recent research include ensuring precise temporal 

synchronization to avoid alignment errors during fusion, reducing each modality to its most 

informative features to minimize computational burden, and selecting fusion strategies that 

match the specific research or operational objective, whether it involves real-time monitoring or 

offline analysis, prediction or exploratory discovery. As Dr. D noted, even within the next five 

years, truly integrated multi-modal fusion will likely remain an active area of development. 

Continued progress is expected across both statistical and AI methods that aim to process and 

learn from complex multi-modal data streams in a unified framework. 

Computational Demands: Online vs. Offline Processing 

A critical yet often underappreciated challenge in real-time cognitive state monitoring is 

the computational burden associated with online processing of multi-modal data. Unlike offline 

analysis, which benefits from unlimited time and computational resources, real-time systems 

must operate under strict latency and processing constraints. This section compares these two 

modes and outlines the implications for algorithm design and deployment in live cognitive 

monitoring systems and wearable devices.  

Latency and Throughput Constraints 

Offline analysis allows researchers to record hours of data and process it at leisure on 

high performance workstations or computing clusters. For example, an algorithm that requires 

ten hours to analyze a one-hour dataset is acceptable in offline contexts. In contrast, online 

processing must keep pace with incoming data in real-time or near real-time. Depending on the 

application, this may require output updates every few milliseconds to a few seconds. For 
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instance, a brain computer interface that detects lapses in attention may need to update its output 

every 100 milliseconds, whereas an offline analysis can afford to average across multiple trials. 

This low latency requirement demands algorithmic simplicity and efficiency. As Dr. A 

explained, certain advanced methods cannot be implemented online. A Butterworth infinite 

impulse response filter with zero phase distortion, for example, requires both forward and 

backward processing of the signal and thus access to future data. In real-time, such filters must 

be replaced with causal, forward-only alternatives, which may introduce slight delays or reduced 

performance. More generally, any method that requires access to the complete dataset, such as 

full Fourier transformations or batch model training, must be adapted to support incremental or 

streaming computation. 

Processing Power and Hardware 

Offline computations are typically executed on desktop machines with multicore 

processors, large memory capacity, and sometimes graphical processing units. Cloud computing 

and high-performance clusters (HPC) are often employed for intensive tasks, such as training 

deep neural networks on combined EEG and fMRI datasets. In contrast, online systems, 

particularly those deployed on portable or wearable platforms, face significantly greater 

hardware constraints. When computations are performed on a laptop or mobile phone during an 

experiment, it may compete for CPU cycles with other background tasks and be limited by 

battery life. 

Embedded processing on sensor devices introduces even tighter limitations. Many 

wearable EEG and physiological monitoring devices rely on microcontrollers with restricted 

memory and processing capabilities. Algorithm design must therefore be tailored to fit these 

constraints. While offline algorithms may load gigabytes of data into memory, real-time systems 

typically operate on rolling buffers spanning only a few seconds. Dr. F emphasized that online 

device computation often compromises other performance aspects, such as increasing battery 

consumption, heat generation, or device weight. To address these issues, processing code must 

be optimized using low level programming and efficient libraries and sometimes offloaded to 

dedicated hardware such as digital signal processors (DSP). 

Algorithm Complexity and Fidelity 

Another important distinction lies in the complexity and fidelity of algorithms. Offline 

methods are often optimized for maximum accuracy and detail, whereas online algorithms 

prioritize efficiency and responsiveness. Dr. E noted that offline analyses produce more complete 

and higher dimensional representations, while real-time implementations compress the data into 

lower dimensional forms that are easier to handle. For example, a full EEG spectrogram may be 

computed offline to characterize cognitive state, while an online implementation might rely on 

just one or two frequency band metrics, such as beta or alpha power. 

This form of data compression involves a tradeoff between richness and utility. It is often 

necessary to reduce the data to compact, informative indices that enable real-time interpretation. 

Algorithms must also be explicitly designed to process incoming data in chunks and update 

outputs incrementally. Dr. D explained that making an algorithm compatible with streaming 
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involves not only algorithmic adjustments but also engineering expertise. Some ML models, 

especially those designed for batch processing, require modifications to support online learning 

or inference. Simpler models such as moving window classifiers or incremental learners are 

often better suited to real-time deployment. 

Robustness and Maintainability  

Offline analyses are typically conducted in flexible software environments that are easy 

to update or modify. In contrast, real-time systems deployed in consumer devices may 

implement algorithms in firmware or hardware to improve performance and energy efficiency. 

As Dr. B stated, embedding an algorithm in a hardware circuit or firmware can make updates 

difficult or impossible, which increases the importance of upfront validation and robustness. On 

the other hand, implementing core computations in hardware can improve reliability and ensure 

consistent timing, which are critical in closed loop systems. 

For example, consider a system that integrates eye tracking and EEG to detect workload 

and provide real-time feedback. Offline, one might use a complex pipeline involving 

independent component analysis, wavelet decomposition, and deep convolutional networks to 

achieve high classification accuracy. However, deploying this pipeline in real-time on a tablet 

used by a student would be computationally impractical. Instead, the system might use a 

simplified feature set, such as frontal beta power and blink metrics, with a lightweight classifier 

such as a linear discriminant function. Although this may result in lower accuracy, the model can 

operate efficiently and deliver timely feedback. 

As Dr. G observed, handling issues such as motion artifacts in real-time is often 

infeasible with limited processing power. In such cases, system designers may need to accept 

some loss in accuracy or compensate with well-designed sensors that minimize noise at the 

source. 

Design Implications 

Experts highlighted differences in the design philosophy of offline versus online 

algorithms. Offline analyses are often exploratory, designed to extract maximum insight from 

data. In contrast, online device algorithms are typically purpose built, streamlined, and tuned for 

speed and reliability. Dr. F provided the example of a wearable posture sensor designed to alert 

users when they slouch. Such a device must rely on a simple rule-based algorithm that operates 

reliably and continuously. Attempting to perform complex diagnostic tasks, such as detecting 

neurological disorders, on the same hardware would likely compromise its effectiveness. In these 

cases, a hybrid approach known as edge computing may be employed. Basic processing occurs 

on the device, while more complex analysis is performed on a remote computer using streamed 

data or intermediate results.  

When developing algorithms for multi-modal cognitive monitoring, it is essential to 

determine whether the end use is offline analysis, online real-time application, or both. 

Algorithms intended for real-time deployment should be tested under realistic streaming 

conditions. Techniques such as load testing, code profiling, and use of compiled programming 

languages are important to ensure responsiveness and reliability. Often, an algorithm developed 
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offline must be re-engineered for deployment. For example, a MATLAB script (MathWorks Inc, 

MA) may need to be rewritten in C++ or optimized in Python to achieve the required execution 

speed. In some cases, a deep learning model may be used offline to identify key features, while a 

simpler logistic regression model is implemented online for efficient execution. 

Ultimately, the distinction between offline and online processing reflects a tradeoff 

between insight and immediacy. Offline pipelines prioritize comprehensive understanding, while 

real-time systems aim to deliver actionable results within strict constraints. Both approaches are 

essential. Offline analysis informs theoretical models and system design, whereas online 

capability enables practical applications such as neurofeedback, wearable monitoring, and brain 

computer interaction. As computational hardware continues to advance, the gap between offline 

and real-time capabilities will narrow. In the meantime, careful algorithm design, optimization, 

and a clear understanding of system constraints are essential for successful real-time deployment 

in multi-modal cognitive monitoring. 

Conclusion 

Multi-sensor neurophysiological recording offers exciting possibilities for understanding 

cognition in realistic settings, but it comes with substantial technical challenges. In this report, 

we outlined four key challenges: synchronization, real-time analysis, data fusion, and 

computational demands, and surveyed current solutions for each. Synchronization across 

modalities is critical to ensure that disparate signals can be meaningfully compared. Researchers 

employ hardware triggers and software framework like LSL (Kothe et al., 2024) to achieve 

timing precision on the order of milliseconds or better. Online analysis requires robust artifact 

handling and clever validation strategies to maintain data quality and model performance during 

live experiments, while some progress has been made (e.g., real-time feedback loops and 

adaptive QC measures), it remains difficult to match offline data cleaning in real-time. Data 

fusion and integration techniques are unlocking the potential of multi-modal insights. Effectively 

combining streams (especially in real-time) demands careful feature engineering and still often 

falls short of its promise, pointing to an important direction for future research. Finally, the 

computational constraints of real-time, online device processing forces a trade-off between 

complexity and speed, a reminder that algorithms must be designed with the end-use 

environment in mind. 

Across these domains, the trend is toward greater integration—integration of multiple 

data sources, integration of real-time loops when analyzing offline (through shadow modes or 

periodic validations), and integration of algorithm development with hardware capabilities. The 

experts predict that some problems, like basic multi-sensor time synchronization, will see 

significant improvement in the next five years, thanks to advancing wireless technologies and 

standards. Others, like real-time artifact removal in freely moving humans, will likely continue to 

challenge us. The pursuit of truly mobile, multi-modal cognitive monitoring will continue to 

drive innovation at the intersection of neuroscience, engineering, and data science. By tackling 

the challenges outlined here with interdisciplinary approaches, we can study the brain and body 

in concert in the real world. This will yield richer understanding of cognitive processes and 

enable the use of wearable sensors to monitor operators’ cognitive states in real-time, guide 

aircraft automation, and predict performance to help prevent potential mishaps.  
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Appendix A. Acronyms and Abbreviations 

ADC Analog-to-Digital Converter 

AI Artificial Intelligence 

ANS Autonomic Nervous System 

API Application Programming Interface 

ASR Artifact Subspace Reconstruction 

BCI Brain Computer Interface 

BLE Bluetooth Low Energy 

CCA Canonical Correlation Analysis  

CPU Central Processing Unit 

DSP Digital Signal Processor 

ECG Electrocardiogram  

EDA Electrodermal Activity 

EEG Electroencephalogram  

EOG Electrooculography 

fNIRS functional Near-Infrared Spectroscopy  

FVL Future Vertical Lift  

GLM Generalized Linear Model 

GPS Global Positioning System 

GPU Graphic Processing Unit 

HRV Heart Rate Variability 

HPC High-Performance Clusters 

IEEE Institute of Electrical and Electronics Engineers 

ICA Independent Component Analysis 

IIR Infinite Impulse Response 

IMU Inertial Measurement Unit 

I/O Input/Output 

LE Low Energy 

LSL Lab Streaming Layer 

MEG Magnetoencephalography  

ML Machine Learning 

MoBI Mobile Brain/Body Imaging 

NTP Network Time Protocol 

OSM Operator State Monitoring  

POV Point of View 

PPG Photoplethysmogram 

PTP Precision Time Protocol 

QC Quality Control 

RSP Respiration 

SCG Seismocardiogram 

TFT Temporal Fusion Transformer 

TTL Transistor-Transistor Logic  

USAARL U.S. Army Aeromedical Research Laboratory 

UWB Ultra-Wideband 

VR Virtual Reality 

XDF eXtensible Data Format 
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Appendix B. Experts’ Responses 

1) What level of inter-stream temporal error is still acceptable for your analyses? 

Dr. A:  

This depends on the streams’ sampling rate. For most paradigms target ≤ 10 ms jitter and 

≤ 5 ms drift per minute between streams that index fast neurophysiology (EEG, fNIRS Hb O 

phase locked tasks, pupillometry, EMG). 

Cognitive state metrics (e.g., workload indices) tolerate slightly looser alignment 

(± 20 ms) because we generally aggregate across hundreds of milliseconds. 

For event locked evoked responses, especially when fusing EEG with stimulus triggers or 

eye blinks, I insist on sub-millisecond trigger precision even if the continuous streams drift by a 

few milliseconds over time. 

Dr. B: 

It really depends on the dependent variable I am interested in (EEG response to fixation 

onset: lower temporal error required compared to the correlation between facial expression and 

HRV in a fatigue experiment). 

Dr. C: 

less than 10 ms 

Dr. D: 

Generally, if there is a constant delay, we aim at fixing this offline by correcting for it. 

For jitter, I would assume not more than 5 to 10 ms (absolute error) 

Dr. E: 

I am mostly working with EEG, MEG and intracranial EEG in human participants to 

study cognitive processes. For me I would say this is 5 ms. 

Dr. F: 

It strongly depends on the nature of the data being collected but, in general, a temporal 

asynchrony in the order of hundreds of milliseconds is acceptable for fNIRS/DOT data, and in 

the order of a few milliseconds may be acceptable for EEG data. Other physiological data 

streams (EKG, respiration, GSR) also have their own features, but I’d say that tens to one 

hundred milliseconds could be deemed acceptable (where less is better, obviously).  

Dr. G: 

~1 millisecond 
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Dr. H: 

For some data collection, an error under 20-30 ms is acceptable; however, in many of our 

studies we’re looking at smaller event related potentials based on gaze-contingent stimuli. For 

those, error greater than 10 ms could cause sufficient variability to drown out smaller 

components of interest. 

2) If you have unlimited resources, what would be your “gold-standard” synchronization setup 

look like? Why isn’t it practical today? 

Dr. A:  

Ideal world: 

• Precision time protocol (PTP/IEEE 1588) grand master clock distributed over 

fiber to every sensor hub, with hardware level timestamping at ADC sampling, 

plus shared PPS (pulse per second) derived from GPS to eliminate drift. 

• Redundant trigger lines (TTL) and optical isolators for fail safe. 

• Central ledger that logs clock skew estimates in real-time so software can 

dynamically resample. 

Why it’s impractical today: 

• Wearable sensors run on BLE and/or limited chipsets that lack deterministic 

timestamping. 

• Fiber or PPS cabling negates mobility and ecological validity. 

• Sub µs hardware clocks inflate power draw and cost; most head worn devices can 

spare only a few milliwatt (mW) for timing. 

To account for these limitations and improve on the existing solutions, actually, we have 

developed a hardware solution in my lab. I have advised three different master theses over the 

years (listed below) as we iterated it.  

MS theses that I advised for the hardware solution that we call NeuroHub and its 

evolution: 

Grzeczkowski, N. V. (2014). NeuroHub: Portable and scalable time synchronization 

instrument for brain-computer interface and functional neuroimaging research [Master’s Thesis, 

Drexel University]. 

Thomas, N. (2017). NeuroHub networking integration: Time synchronization device for 

multi-modal brain imaging and hyperscanning research [Master’s Thesis, Drexel University]. 

Dai, A. G. (2021). NeuroHub fog: Wireless network time synchronization device for 

multi-modal brain imaging and hyperscanning research [Master’s Thesis, Drexel University]. 
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Dr. B: 

The gold standard synchronization setup is very achievable by means of widely supported 

Lab Streaming Layer (LSL) framework and attainable networking equipment. I have been 

working with LSL since it was published about 6–7 years ago now and my gold standard would 

be every experiment apparatus out-of-the-box supporting it. 

Dr. C: 

Stream sync should be done directly on the sensing hardware to avoid network latencies. 

Timestamp alignment between streams will always have failure modes. 

Dr. D: 

All tethered to one PC—not practical as it won’t allow naturalistic movements of 

participants in most of the hardware settings we use and/or the devices that allow mobile 

recordings cannot be tethered 

Dr. E: 

Parallel port type of cable with TTL level signals. Well, that is the old-fashioned way that 

works robustly in lab settings... Perhaps with unlimited resources I would want to use parallel 

optical fibers in the same way as TTL signals over a multi-core cable, or possibly serial 

communication over a single fiber with parallel TTL interfaces on both ends. The length of the 

fiber would not be a problem and there is no electromagnetic interference. That makes it 

compatible with EEG, MEG, fMRI, but also in harsh and less controlled environments like a 

clinical setting. 

I can think of a few different reasons why it is not practical: 

The parallel cable is not practical because digital communication between devices (and 

chips) has switched to serial. Serial-over-USB is the standard and Arduino-like devices are 

needed to get triggers from button-boxes and to amplifiers. 

Regarding optical fibers, lab support staff can manage a soldering iron and an 

oscilloscope, but optical interconnections are harder to implement, test, and maintain in an 

environment where the setup needs to be flexible (like a research lab, where very regularly new 

equipment needs to be incorporated into the setup). 

Parallel TTL signal is also not practical as it limits the representation of information that 

can be conveyed to numbers, often between 1-255 or 1-(2^16-1). Coding of more complex 

information (for example, where on the screen did what stimulus appear?) requires numeric 

sequences of trigger codes, whereas more flexible representation (as allowed in the BIDS 

events.tsv or with HED tags) is more practical. 

Labs are getting more complex and wired setups are hard to implement and maintain. 

Wireless allows for more flexible lab setups. LSL over Wifi allows for that, but sometimes we 

also use ZeroMQ (Zero Message Queue). 
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Dr. F: 

A wireless setup with optimal performance would be ideal in many situations. In essence, 

an LSL interface without the complexities of wired networking and protocols. 

Dr. G: 

Wireless mechanisms, using a standard such as Bluetooth low energy (BLE) to allow 

broad use of consumer electronics gadgetry. BLE is not ideally set up for sub-millisecond 

wireless time synchronization, unless separate local clocks are built into the devices, which 

requires additional power burden. 

Dr. H: 

Currently we’re building the infrastructure to record from IMUs on multiple rifles and 

stream data from multiple HoloLenses. The “gold standard” that we’re aiming for is to be able to 

record from larger scale units. Currently this is difficult to manage due to bandwidth issues. 

3) Which artifacts are still hardest to suppress in real-time without post-hoc processing? 

Dr. A: 

Motion coupled hemodynamic fluctuations in fNIRS (especially scalp blood flow 

impact). 

EMG contamination of high gamma EEG during speech or chewing. 

Respiration linked baseline drift in wearable ECG when subjects are talking or moving. 

Real-time regression filters help but truly separating physiological covariates without 

post-hoc ICA/Generalized linear model (GLM) remains tough. 

Dr. B: 

Even with post-hoc processing particularly, distinguishing the dependent variables we are 

interested in from the noise floor can still be problematic. With push for ecological validity and 

more realistic experiment settings ever on the rise in our field of neuroergonomics, the noise 

floor has been on a trend of increase alongside. Environmental noise is still therefore, the biggest 

challenge. This ranges from easier fixes, such as continuing to use gel ExG electrodes instead of 

dry to reduce movement artefacts or putting isolation against sunlight in eye tracking or fNIRS 

studies to random radio frequency jammer of some bureaucrat driving nearby and disrupting 

experiments. 

Dr. C: 

It depends a lot on the modality. EEG is not affected by the same artifacts as EMG for 

example. It also depends a lot on what you do with the data. If the data gets piped to a machine 

learning maybe you don’t need to clean anything. 
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Dr. D: 

Mechanical artifacts due to cable sway or the electrode skin interface (impedance 

changes). 

Dr. E: 

Movement artifacts where the transducer loses touch with the skin. 

Dr. F: 

Movement artifacts in neuroimaging are not so difficult to detect in real-time, but 

correcting them on the fly is certainly a higher-level challenge. 

Dr. G: 

Episodic artifacts from motions. 

Dr. H: 

Extracting head movement artifacts (both noise from wire movement as well as muscle 

activity) is difficult to parse in real-time. 

4) Do you trust real-time quality metrics? Why? 

Dr. A:  

I treat them as early indicators, not final results. Signal quality indices based on 

impedance, SNR, or kurtosis are reliable for gross failures (open lead, saturated diode) but poor 

at detecting subtle non stationarities. We still log full session data and run offline diagnostics 

before drawing conclusions.  

Dr. B: 

Depends on the dependent variable again, in that, if what is perceivably real-time can be 

tractably analyzed and output during data flow – great. For instance, in EEG, environmental 

factors can be strong enough to outline entire wavebands, in which case having a quality metric 

that would distinguish environmental noise, within device noises (I have some first-hand 

experiences with bad circuit designs causing imperfect data recordings), and participant related 

noise – then that would be a real-time quality metric worth a look. And this is easier to attain 

with due process than realized. But an EEG device reporting on impedance? Not as much as I 

trust my trained eye. 

Dr. C: 

With the setup I use, yes, I do. 
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Dr. D: 

We have not been working with real-time quality metrics yet and I would be doubtful that 

they would be reliable and robust for different movement scenarios. 

Dr. E: 

Real-time QC is useful if it leads to real-time actions of the experimenter in case the 

quality is not as good as it should be. For example, the experimenter re-attaching an electrode. 

Real-time loses its value if it is open-loop and if there is no feedback to the measurement.   

Real-time QC can also be useful if more information is available during the measurement 

than what is encoded and stored on disk. This may happen for example with eye trackers, where 

the real-time QC can use the camera image, whereas the signal stored on disk has been 

condensed into the x and y gaze position and blinks. 

If the real-time signal on which the QC is computed is the same as the signal that is 

available offline, then offline always has the advantage that there are no computational limits (as 

in real-time) and that there is flexibility in the choice of the algorithm or parameters. 

Dr. F: 

Several metrics for real-time assessment of data quality are available, and in most cases 

are reliable. Obviously, a post-hoc analysis of data quality is also necessary to put in the context 

of the experiment, and generate a proper strategy for data pruning or filtering. 

Dr. G: 

If real-time means updates on tens of seconds timescales to allow for averaging and 

rejection of outliers, then yes. If real-time means second to second, or sub-second, 

measurements, then no. 

Dr. H: 

It depends. On homemade data collection platforms it can be easier to classify bad 

samples on the fly. However, depending on the depths of the black box in the vendor’s 

application programming interface (API) there could be interpolation methods that mask bad 

samples and are not able to be flagged/rejected until post-hoc processing. 

5) What is the biggest difference between an algorithm that performs well offline and one that 

survives on-device deployment? 

Dr. A: 

Offline processing affords different types of filters (such as infinite impulse response 

(IIR), Butterworth with zero-phase correction, that is done in both forward and backward passes 

for zero phase correction and requires all data at hand) and cannot be done online in real-time.  
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Dr. B: 

Under the assumption that on-device deployment of an algorithm has been done on a 

circuit level, then circuit designs’ robustness vs. inflexibility and tangibility is a double-edged 

sword; yes, robustness can be far greater in controlled and well tested circuitry but the device 

circuit needing anything beyond a firmware update? That would render it unusable, therefore 

unfeasible. Assuming a software deployment of on-device processing comes with a plethora of 

tractability, hardware design, cost, and maintenance problems of its own.  

Dr. C: 

If the target is one device usage with streaming data you need to make sure that any 

algorithm you use is stream compatible and implemented as such. Then putting this on device 

should not lead to any blocker beyond money and skills. 

Dr. D: 

Higher flexibility for most offline algorithms 

Dr. E: 

Offline algorithms can provide the researcher with more complete but also more complex 

representations of the signal features of interest. An on-device algorithm usually serves to 

“compress “the high-dimensional signal into something that is as lo-dimensional as possible, as 

that is the easiest to interpret and work with. 

Dr. F: 

It strongly depends on what the goal of the algorithm is. For instance, an on-board quality 

checker with immediate feedback to the user is impactful, and it therefore it must be both reliable 

and computationally efficient. However, if the algorithm’s objective is data processing/analysis 

leading to interpretable results, an on-device implementation is not only difficult to implement 

but also may compromise other useful device features like battery duration, computational 

demand, weight, and other ergonomical and practical aspects.     

Dr. G: 

Algorithms that can handle motion artifacts are needed for on-device deployment, often 

difficult given the power and compute constraints. 

Dr. H: 

Ability to handle out of distribution or rare events.  

6) How do you validate a closed-loop ML model that adapts on the fly? 

Dr. A: 

Shadow mode logging: Run the adaptive controller in parallel while the actual stimulus is 
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driven by a trusted baseline; compare decisions post-hoc. 

Replay benchmarking: Feed the exact recorded streams back through multiple frozen 

checkpoints of the model to audit divergence. 

Interleaved lock in trials: Insert periodic calibration epochs where ground truth labels are 

known (e.g., visual oddball) so you can quantify drift without interrupting the study. 

Dr. B: 

I answer under the assumption that this is not a fully black-box approach more so 

followed by deep learning aficionados, and instead a well-designed complex feedback 

mechanism of a multi-layered ML model. We can go two methods here; a theoretical approach 

where the mathematics behind the ML is proven, the implementation is sound and valid, and the 

overall realization can be tested within tractable circumstances, and a testing data set to also 

provide an empirical perspective to testing for controlled as well as uncontrolled input/output 

(I/O).  

Dr. C: 

Via behavioral performance, e.g., how fast the person can do the task. 

Dr. D: 

Not yet worked with such an approach but I would try to come up with a standardized 

test-battery that includes different standardized movements. 

Dr. E: 

It is not clear to me here what the closed-loop aspect of the ML model is. There are many 

loops that can be closed with physiological signals, but whether closing them is meaningful 

depends a lot on the real-world application or experimental setup.  

I would distinguish between validity and reliability. I would assess reliability by 

repeatedly evaluating the ML model on different versions of the signal with varying signal 

quality. That does not have to be done online. I would test validity using some sort of 

experimental design where the outcome of the ML model would be specifically studied under 

known experimental perturbations (e.g., conditions that the ML model is meant to detect). 

Dr. F: 

I don’t do much ML in my work, so I can offer just a general and perhaps obvious 

perspective. Validation should involve observations that are distinctively dissimilar from the 

training set, so to understand the generalizability of the model and, as a subsequent step, to 

develop a refinement/adaptation of such model for better performance. 
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Dr. G: 

Probably start with validation in a controlled setting such as a hospital, then progressing 

to home use – ultimately to the field. 

Dr. H: 

No response 

7) How do you handle missing packets or corrupt segments in a long recording when the study 

cannot stop? 

Dr. A: 

Reject/eliminate that part of the task condition(s) from analysis. 

Dr. B: 

Depends on the dependent variable, the duration of data corruption and/or the amount of 

missing packets. If it is too valuable data, gone for too long, then I would go as far to drop 

portions of experiment blocks altogether if I absolutely cannot stop and/or restart the study. 

However, that is bad design to begin with and I hope to never do one. If it is so much so that we 

end up with too little a dataset, then there have been novel methods within the past few years for 

generative-adversarial-networks (GANs) to more traditional ML approaches, and even signal 

processing theory to visit to recreate, repair, or interpolate the data if the data type fits this frame 

of possibilities. 

Dr. C: 

If the data is lost, it’s lost. 

Dr. D: 

These are usually removed offline from analyses in most our approaches as we have no 

ground truth data for different movements that would allow for some kind of interpolation.  

Dr. E: 

I would try to identify that they are missing (for example by looking at jumps in a clock 

or counter channel) and not interpret the data that spans over such an interruption, i.e., the 

algorithm would skip that section of data. I would not try to interpolate the data. 

Dr. F: 

In task-based experiments, we typically remove/trim entire data segments that may lead 

to false positive results, i.e., an entire block, or trial.  
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Dr. G: 

Usually these time segments are simply not analyzed. 

Dr. H: 

Currently we don’t have an agreed upon method on how to handle missing packets in 

such a scenario. Typically, this is just flagged and handled in post-processing. 

8) What is the best method you’ve seen for ground-truthing multi-modal physiological 

streams in the wild? 

Dr. A: 

A hybrid of synchronized head mounted video + inertial measurement + stamped 

experimenter annotations. The video provides context; IMU gives frame accurate movement 

onset; annotations mark task events. When all three agree, you have a defensible ground truth. 

Dr. B: 

Divide and conquer has been one. Where all dependencies of a very complex interaction 

setting can be broken down to their fundamental components (as far as our perception of the 

interaction setting allows of course) and tested individually. Done with diligence and controlling 

for unknown interaction effects as best as possible (i.e., not using components that are too 

intertwined) then this works well. For instance, using an experiment battery to investigate how 

outcomes would be affected by the interaction environment and more to see whether the 

experiment apparatus can still perform functionally enough. 

Dr. C: 

You could run quality checks online, but this has a computational cost. It also depends a 

lot on what stream you consider. 

Dr. D: 

I have not seen any ground-truthing approach for multi-modal but only single tests for 

single modalities 

Dr. E: 

Comparing it to golden-standard physiological streams in well-controlled lab 

environments. 

Dr. F: 

LSL offers good implementation for multi-modal streams but, testing wise, custom 

methods are often employed by individual researchers/labs. 
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Dr. G: 

Measurements with multiple modalities or devices, e.g., HR from ECG, SCG, and PPG, 

to establish redundancy and internal consistency. 

Dr. H: 

Collecting point of view (POV) video data has been helpful for verify data collection in 

eye tracking and head tracking.  

9) What is the most overlooked privacy, security risk when streaming raw physiological data 

wirelessly? 

Dr. A: 

Physiological “side channel” identity leakage. Even if names are stripped, raw 

ECG/EEG/fNIRS spectra contain quasi unique biometric signatures. Streaming them over lightly 

encrypted BLE (common in consumer wearables) enables re-identification attacks. 

Dr. B: 

The use of Bluetooth low energy (LE) is often done without much care due to how little 

range it already, perceivably allows – I mean, it is a standard for fully unencrypted data transfer 

without as much as a client-server handshake over the air that capturing it is a thumb sized USB 

device away. Making sense of an unknown data structure is still madness though, and with 

quality critical data – it is easy to understand why there is not much care given to it. But other 

than that, 802.11 can be tractably bullet proof for the use we have for it while regular Bluetooth 

is strong enough. 

Dr. C: 

It’s pretty obvious that you record the packets on the Wifi network and if the data is not 

encrypted you can collect the data without authorization. 

Dr. D: 

Not sure, potentially other devices recording the data that might further allow personal 

information to be matched with the physiological data (e.g., photos). 

Dr. E: 

That being near the person being recorded (i.e., in wireless range) might disclose 

information about the stream to a bad actor. That the stream is transmitted through an external 

device (e.g., first Bluetooth to phone, then from phone via Wifi to the cloud) and that the in-

between device can be the weak link. That data gets stored on an external device (like a phone, 

computer, or cloud). The number of bad actors able to connect to the cloud (or to the in-between 

device) is infinitely larger than the number of bad actors that can be in physical proximity. 
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Dr. F: 

Associating eavesdropped data to participants is certainly a concern, although decoding 

and interpreting the data stream in a way that violates privacy remains a challenge for bad actors. 

Dr. G: 

Don’t know how to answer this one. 

Dr. H: 

It’s not necessarily overlooked but obviously streaming live data wirelessly is vulnerable. 

As with any data collection, it is important to remember that even if data does not contain PII, it 

can be reidentified if enough data is collected and the sampling method for participants is 

restricted. 

10) Looking five years ahead, which current research question will feel “resolved” and which 

challenge will still be with us? 

Dr. A: 

“Probably solved” 

Low jitter multi sensor time sync for wearables; next gen BLE/ULPW UWB chipsets 

already demo sub microsecond network timing. 

“Still haunting us” 

Real-time motion artifact rejection for fNIRS/EEG in fully free-living conditions. Human 

movement diversity outpaces current online models, and power efficient optical flow or EMG 

aware correction remains an open challenge. 

Dr. B: 

No response 

Dr. C: 

Provided enough physiological data are collected in a consistent setting (same hardware, 

same setup) we’ll be able to have models that generalize to any person without personalized 

models. 

The challenge will be to address hardware variabilities and heterogeneous datasets. 

Dr. D: 

Resolved, hardware development for improved and synchronized multi-modal 

recordings. 
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Open issues: Data fusion approaches allowing for “real” multi-modal analyses. "real" in 

the sense that the data is fused, and different modalities inform the analyses of other modalities. 

We often record multi-modal but then analyze EEG alone, ECG alone etc. 

Dr. E: 

Miniaturization of electronics will allow more embedded sensing devices to be built into 

other things, hence allowing for more multisensory data capture.  

Researchers will still not have a better training in or understanding of the signals that they 

are working with. Capturing the experimental conditions in which data was recorded (i.e., 

annotations and metadata) will still be limited. 

Dr. F: 

Noise and movement artifacts will not disappear, but I believe that great progress could 

be made in correcting or trimming unusable data very reliably, especially using multi-modal data 

that support one another, i.e., wearable IMU data and neuroimaging data. 

Dr. G: 

Conventional vital signs may be resolved. Motion artifact cancellation and accurate 

biochemical measurements will continue to be difficult. 

Dr. H: 

Team data collection should be solved within the next 5 years (e.g., multisensory data 

streams simultaneously collected from multiple members of the squad). 
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